
Bachelorarbeit im Fach Informatik
Rheinisch-Westfälische Technische Hochschule Aachen

Lehrstuhl für Informatik 6
Prof. Dr.-Ing. H. Ney

Extension of the Attention

Mechanism in Neural Machine

Translation
∗

27. März 2018

vorgelegt von:
Christopher Jan-Steffen Brix

Matrikelnummer 343982

Gutachter:
Prof. Dr.-Ing. H. Ney
Prof. B. Leibe, Ph. D.

Betreuer:
M.Sc. P. Bahar

∗Updated version. The submitted thesis is available at the RWTH Aachen.

Erklärung

___________________________ ___________________________

Name, Vorname Matrikelnummer (freiwillige Angabe)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel

__

__

__

selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf

einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische

Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner

Prüfungsbehörde vorgelegen.

___________________________ ___________________________

Ort, Datum Unterschrift

 *Nichtzutreffendes bitte streichen

Belehrung:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

___________________________ ___________________________

Ort, Datum Unterschrift

Brix, Christopher Jan-Steffen 343982

Extension of the Attention Mechanism in Neural Machine Translation

Aachen, 27. März 2018

Aachen, 27. März 2018

iii

Abstract

Recently, machine translation (MT) has been significantly improved by the usage
of neural networks (NNs). Neural machine translation (NMT) allows to read a
source sentence in a given language and to output the translation in another. The
most promising results are reported based on an encoder-decoder architecture with
an additional attention mechanism. There, the encoder reads the source sentence
and generates a set of source representations. The decoder outputs a sequence of
variable length given the target history and a context vector. This context vector
is determined by the attention layer and is dependent on the source representations
and the target history. To this end, the attention layer selects the currently im-
portant positions in the input, therefore creating an alignment between source and
target. A lot of research is put into different definitions of the attention layer.

In this bachelor thesis, we evaluate the impact of making the encoder depend
on the decoder and therefore recomputing the encoding at every time step. Fur-
thermore, we try to provide the attention layer with the knowledge of which source
words it attended to at the current and at previous time steps. We use recurrent
neural networks (RNNs) that can process sequences of arbitrary length to process
the source representations and generate the context vector for the decoder. Because
basic RNNs suffer from vanishing and exploding gradients, we use long short-term
memory (LSTM) cells and gated recurrent units (GRUs). To further improve the
model, we add an additional attention layer on top of the RNN to compute the
context vector as a weighted sum. Besides that, we generalize the concept of RNN
attention layers to multiple dimensions. We use two-dimensional LSTM (2DLSTM)
to process both the source sentence and the target history at the same time. In this
topology, we view the translation as a two-dimensional mapping of the source and
target into a shared vector space. By allowing the 2DLSTM to update the source
representations based on the current decoder state, we hope to provide the network
with a deeper insight into the dependency between both sentences. We verify that
it is beneficial to use one- and two-dimensional RNNs as the attention layer, even
though they take significantly more time to train.

Furthermore, we propose a novel architecture that combines the encoder, atten-
tion layer and decoder within either one or two 2DLSTM layers. We evaluate its
performance with respect to the source sentence length and show that it is able to
slightly outperform a conventional encoder-decoder architecture with an attention
layer.

v

Contents

Abstract v

1 Introduction 1
1.1 Related Work . 2
1.2 Outline . 3

2 Statistical Machine Translation (SMT) 5
2.1 Fundamental Equations . 6
2.2 Beam Search . 8
2.3 Automatic Evaluation Metrics . 10

2.3.1 BLEU . 11
2.3.2 Translation Edit Rate (TER) 12

3 Artificial Neural Network (ANN) 13
3.1 Neuron . 13
3.2 Feedforward Neural Network (FFNN) 14
3.3 Recurrent Neural Network (RNN) 15

3.3.1 Long Short-Term Memory (LSTM) 17
3.3.2 Multi-Dimensional LSTM (MDLSTM) 18
3.3.3 Gated Recurrent Unit (GRU) 23

3.4 Training . 23
3.4.1 Loss Function . 24
3.4.2 Optimization . 25

3.5 Practical Observations . 31

4 Neural Machine Translation (NMT) 33
4.1 Encoder-Decoder Architecture . 33

4.1.1 Encoder . 33
4.1.2 Decoder . 34

4.2 Attention-based NMT . 35
4.2.1 Bidirectional Encoder . 36
4.2.2 Attention Layer . 36
4.2.3 Decoder . 37

vii

Contents

5 Extensions of the Attention Mechanism 39
5.1 Recalculating the Encoder State . 40
5.2 One-Dimensional (1D) Attention . 40

5.2.1 Additional Attention Layer 41
5.2.2 Providing the Decoder State 43

5.3 Two-Dimensional (2D) Attention . 43
5.3.1 Difference between Training and Decoding 44
5.3.2 Optimization of the Backward Pass 47

5.4 2D Sequence to Sequence (2D seq2seq) Model 48
5.4.1 2D Encoder . 48
5.4.2 Weighting Mechanism . 49

6 Experiments 51
6.1 Preprocessing . 51

6.1.1 Tokenization . 51
6.1.2 Subword Units . 51
6.1.3 Category Replacement . 53

6.2 Setup . 53
6.3 Recalculating the Encoding . 55
6.4 One-Dimensional (1D) Attention . 56
6.5 Two-Dimensional (2D) Attention . 57

6.5.1 General Performance . 57
6.5.2 Learning Rate . 61
6.5.3 Model Size . 63

6.6 Two-Dimensional Sequence to Sequence (2D seq2seq) 64

7 Conclusion and Outlook 67
7.1 Conclusion . 67
7.2 Outlook . 68

A Appendix 69
A.1 Derivations . 69

A.1.1 Matrix-Vector Products . 69
A.1.2 Long Short-Term Memory (LSTM) 70
A.1.3 Two-Dimensional LSTM (2DLSTM) 73

A.2 Notation . 78
A.3 Corpus statistics . 80

A.3.1 WMT 2017 German→English and English→German 80
A.3.2 IWSLT 2013 Indomain German→English 81

List of Figures 83

viii

Contents

List of Tables 85

Bibliography 89

ix

Chapter 1

Introduction

With over 7,000 spoken languages in the world [Simons and Fennig, 2017], the
ability to translate them can be very helpful. Unfortunately, manual translation is
very labor intensive and therefore costly. If the language is rarely spoken, it might
even be difficult to find a bilingual translator.

Machine translation (MT) tries to solve this issue by translating documents from
the source to the target language without the need of human interaction. The
required work is thereby no longer dominated by the size of the corpus that should
be translated. Instead, the main issue becomes how to teach the computer to
translate correctly. Once this is accomplished, the computer can use the learned
knowledge to translate an unlimited amount of data.

In recent years, significant progress has been achieved using neural machine trans-
lation (NMT). Instead of supplying the computer with a fixed set of rules that spe-
cify the individual grammatic rules of each language, in NMT the computer learns
based on a training set. This set consists of a large corpus with one half being
considered the source, the other the target data.

The process of training an NMT system involves the estimation of millions of
parameters. Its ultimate goal is to generalize the ability to translate beyond the
training corpus to allow the translation of unseen sentences.

A translation process can typically be split into three stages. First, the source
sentence must be transformed in a way that allows the network to extract the
meaning the sentence conveys. Then, some words of the sentence are selected to be
translated next, conditioned on the already generated target history. Finally, the
next target word is determined.

In popular models, the second step is made for all source words independently.
We present alternative neural network (NN) structures that allow to select source
words for the next translation step only if specific other source position have been
selected as well. To this end, we apply recurrent neural networks (RNNs) that
have an internal state to the source sentence. We also extend this approach to two-
dimensional LSTM (2DLSTM). Finally, we evaluate the performance of a network
only consisting of a single 2DLSTM, thereby avoiding the need for an explicit
encoder or decoder.

1

Chapter 1 Introduction

1.1 Related Work

NMT has recently emerged as a promising approach to MT. It has been shown to
outperform the conventional statistical machine translation (SMT) systems. Sut-
skever et al. [2014] and Cho et al. [2014] have created the first NMT systems that
use RNNs for an encoder-decoder network. There, one RNN is used to encode the
whole source sentence and another RNN generates an output hypothesis.

With the invention of the attention mechanism by Bahdanau et al. [2014], the
ability to translate long sentences has been greatly improved. It determines which
source positions the decoder should attend to next. Hence, the NMT system is
provided with an implicit alignment model.

Zhang et al. [2016] propose to instead use a one-dimensional (1D) gated recurrent
unit (GRU). This GRU processes the source representations at every decoding step
and internally constructs the context vector that is then used by the decoder. They
report significant improvements over the vanilla attention based model. In [Zhang
et al., 2017], the authors use a GRU to update the encoding of the source sentence
at every decoding step.

Graves et al. [2007] introduce the concept of multi-dimensional RNNs. They show
that a 2DLSTM trained for single digit handwriting recognition is more robust to
deformations that are only applied to the test set than convolutional networks.
Graves and Schmidhuber [2008] apply them to handwriting tasks containing com-
plete words or even lines of text. There, they establish a new state of the art.
Additionally, they provide the explicit formulas for the forward and backward pass
of a multidimensional long short-term memory (LSTM).

For 2DLSTMs, Voigtlaender et al. [2016] describe optimizations that reduce the
time complexity of computing an n×m 2DLSTM from O(nm) to O(n+m). They
implement it for GPUs in the RWTH extensible training framework for universal
recurrent neural networks (RETURNN) that is introduced in [Doetsch et al., 2016].
Due to the increased speed of the 2DLSTM computation that is gained both by
their optimization and the GPU implementation, they are able to experiment with
architectures consisting of deeper 2DLSTMs. Using such a deep multidimensional
network, they outperform the state of the art on two test sets.

Li et al. [2016] use 2DLSTMs to solve automatic speech recognition (ASR) tasks
by processing the data both across the time and the frequency dimension. Sainath
and Li [2016] compare different ASR models, including one that uses 2DLSTMs.

Kalchbrenner et al. [2015] apply another modification of LSTMs to machine trans-
lation. They propose a grid LSTM that has n memory and state cells to communic-
ate with neighboring cells across its n dimensions. Based on this grid LSTM, they
re-encode the source sentence at every decoding step based on the target history.

2

1.2 Outline

1.2 Outline

This bachelor thesis starts with a general introduction to MT (see Chapter 2) that
explains the history of MT and the differences between rule driven and data driven
translation models. Chapter 2 then continues with an overview of SMT, includ-
ing the generation and evaluation of hypotheses (see Section 2.2 and Section 2.3,
respectively)

Chapter 3 provides all necessary information about artificial neural networks
(ANNs), from their general structure (see Sections 3.1 and 3.2) to the more com-
plicated RNNs (see Section 3.3). The training process, consisting of the choice of
loss function, the initialization and finally the gradient computation and weight
update, is explained in Section 3.4.

In Chapter 4, NMT is introduced. The structure of a sequence to sequence model
using an encoder and a decoder is described in Section 4.1. Attention, a technique
to greatly improve the translation quality, is addressed in Section 4.2.

Chapter 5 lists and explains different extensions of the attention mechanism,
mainly focusing on the application of 1D (see Section 5.2) or two-dimensional (2D)
(see Section 5.3) RNNs. A novel approach that eliminates the need for the currently
used encoder-decoder structure is presented in Section 5.4.

In Chapter 6, the general setup of the performed experiments is explained. The
experimental results of the proposed modifications are listed in Sections 6.3 to 6.6.

Finally, in Chapter 7, a summary of all findings is presented. Further avenues of
work that arise from this bachelor thesis are listed in Section 7.2.

3

Chapter 2

Statistical Machine Translation (SMT)

The general task of machine translation (MT) is to translate a given text from
one natural language into another using an automatic mechanism. To this end,
many different techniques exist. They can be categorized as either rule-based or
data-driven.

In a rule-based system, the computer is programmed with a dictionary, as well as
a list of the grammatical rules in both the source and the target language. These
rules are defined by expert linguists. Based on the grammar of the source language,
the computer tries to determine the meaning of the source words. To this end, it
performs classifications like verb and noun discrimination. Using a dictionary, it can
then translate the words to the target language. Afterwards, the stored information
about the target language’s grammar is used to reorder and adapt the translated
words.

As all actions happen due to a specific combination of defined rules, the transla-
tion process of such a model can be debugged relatively easily. Together with the
ability to define additional rules to fix mistakes that have been identified, this could
in theory lead to perfect translations. However, the amount of the necessary work
to create complete dictionaries and sets of rules that are fine-grained enough to
reflect all nuances of a given language is prohibitively high. As the model becomes
more and more complex, it gets increasingly difficult to extend it with additional
rules.

A data-driven approach, on the other hand, derives the rules from a set of exem-
plary translations, called training set. In MT, this set consists of a large amount
of sentences that have been manually translated from the source to the target lan-
guage. The idea behind this approach is to enable the computer to detect the
rules behind the translations itself, removing the need to manually define them.
A single source sentence can often be translated into multiple different sentences
in the target language, that may differ in their wording and structure but convey
the same meaning. Nevertheless, it is definitely possible to identify good and bad
translations. Data-driven models apply statistical methods. There, sentences are
scored based on how likely they are to be a correct translation.

5

Chapter 2 Statistical Machine Translation (SMT)

In this work, we only address data-driven approaches in MT. The following sec-
tion describes the fundamental equations of SMT. A comparison of rule-based and
data-driven methods can be found in [Costa-Jussà et al., 2012]. It also describes
the structure of a rule-based machine translation model.

2.1 Fundamental Equations

SMT is based on the assumption that the translation task can be represented by
a maximization problem. Given a source sentence fJ

1 = f1, . . . , fJ , where fj is the

jth word, a target sentence êÎ1 = ê1, . . . , êÎ , where êi is the ith word, has to be
found that is the most likely translation. This can be formalized as

êÎ1 = argmax
I,eI

1
∈E

{
Pr(eI1|fJ

1)
}

(2.1)

where Pr(eI1|fJ
1) is the true probability of eI1 being the translation of fJ

1 and E
is the set of all possible sentences in the target language. Because no perfect
probability distribution Pr(eI1|fJ

1) is known and the number of possible sentences

eI1 ∈ E increases exponentially with the sentence length I, êÎ1 can only be determined
approximately.

Brown et al. [1993] found that the probability distribution Pr(eI1|fJ
1) gives far

too much weight to sentences eI1 that are not well formed, ie. that do not follow
the grammatic rules of the target language. Using Bayes’s theorem, described in
[Bayes, 1763], and by ignoring terms that are independent of the target sequence,
the formula can be rewritten as follows:

êÎ1 = argmax
I,eI

1
∈E

{
Pr(eI1|fJ

1)
}

(2.2)

= argmax
I,eI

1
∈E

{
Pr(fJ

1 |eI1) · Pr(eI1)
Pr(fJ

1)

}
(2.3)

= argmax
I,eI

1
∈E

{
Pr(fJ

1 |eI1) · Pr(eI1)
}

(2.4)

As a decomposition of the target sequence posterior probability, the target se-
quence prior probability, called language model (LM) Pr(eI1), and a generative
class-conditional distribution, called the inverted translation model Pr(fJ

1 |eI1) are
defined. Pr(eI1) indicates how likely the sentence eI1 is to be used in the target
language and measures whether eI1 is a grammatically correct sentence.

The LM as described by Brown et al. [1990] uses the chain rule of probability
theory to separate the computation of Pr(eI1) to multiple steps:

6

2.1 Fundamental Equations

Pr(eI1) =
I∏

i=1

Pr(ei|ei−1
0) (2.5)

here, e0 is a special token that indicates the beginning of the sentence. ei−1
0 are

called the history of ei.
To simplify this estimation, one can assume that the probability of the occurrence

of a word is not defined by the whole history, but only by the most recent part of it.
Using the Markov assumption, the dependencies are limited to the previous n − 1
consecutive words. This simplification yields:

Pr(eI1) =
I∏

i=1

Pr(ei|ei−1
i−n+1) (2.6)

Due to the fact that it only depends on n consecutive words, this is called an
n-gram LM. It is commonly used in practice and can be learned from mono-lingual
corpora by counting how often which words proceed which histories. Because this
training does not require translated sentence pairs, the available corpora are usually
much larger, often by orders of magnitude. If the data is sufficiently good, this
increase in training data can improve the model’s accuracy.

When using this approach, it is important to notice that during the translation,
the risk of encountering unknown n-grams is large. For n = 3 and a vocabulary of
size 20,000 , there are 20,0003 = 8·1012 possible n-grams. Even though most of these
n-grams will be meaningless, it is very likely that even a large training corpus does
not contain all n-grams that can possibly be used. These unseen n-grams would
have a probability of zero, causing the whole chain of multiplications in Equation 2.6
to become zero as well. Therefore, every translation that contains even a single
unseen n-gram would be considered completely impossible by the algorithm. To
avoid this issue, one usually applies modified Kneser-Ney smoothing as introduced
by Kneser and Ney [1995], Chen and Goodman [1996]. This smoothing technique
assigns part of the probability mass to unseen n-grams.

Brown et al. [1993] propose to use additional hidden variables aJ1 that provide
alignment information from the target to the source sentence. Using those align-
ments, they further split the inverted translation model Pr(fJ

1 |eI1).

Pr(fJ
1 |eI1) =

∑

aJ
1
∈A

Pr(fJ
1 , a

J
1 |eI1) (2.7)

=
∑

aJ
1
∈A

(
Pr(J |eI1) · Pr(fJ

1 , a
J
1 |eI1, J)

)
(2.8)

=
∑

aJ
1
∈A

(
Pr(J |eI1) · Pr(aJ1 |eI1, J) · Pr(fJ

1 |aJ1 , eI1, J)
)

(2.9)

7

Chapter 2 Statistical Machine Translation (SMT)

In these formulas, A is the set of all possible alignments. The new models are
called the sentence length model, alignment model and lexicon model respectively.
This approach to SMT is visualized in Figure 2.1. Often, the alignment model is
used to identify sequences of words that can be translated as a phrase. This process
is called phrase-based translation.

Usually, the maximization is performed in log-space. Och and Ney [2002] describe
how to change the formula to

êÎ1 = argmax
I,eI

1
∈E

{
Pr(eI1|fJ

1)
}

(2.10)

= argmax
I,eI

1
∈E

{
M∑

m=1

λmhm(eI1, f
J
1)

}
(2.11)

where λm is a scaling factor and hm(eI1, f
J
1) is a feature function. This formula

contains Equation 2.4 as a special case for M = 2, λ1 = λ2 = 1 and

h1(e
I
1, f

J
1) = log Pr(eI1) (2.12)

h2(e
I
1, f

J
1) = log Pr(fJ

1 |eI1) (2.13)

This way of solving the maximization allows to easily add additional feature func-
tions.

2.2 Beam Search

Once all probability distributions or feature functions are learned, they can be used
to find translations for unseen source sentences. As a naive way, one could com-
pute all probabilities for all possible target sequences up to some chosen length
in order to exactly determine how likely all possible translations are. However,
this is computationally infeasible because the number of necessary computations
increases exponentially. Let us assume a vocabulary with size 20,000 and a se-
quence of length 30. For this setup, one would have to perform 20,00030 ≈ 10129

computations. Therefore, the number of needed computations has to be decreased
dramatically.
To do so, only a small portion of all possible translations is explored. This is

achieved by using the beam search algorithm. It keeps track of a beam of hypotheses.
After extending all partial hypotheses, it restricts the beam to the n most likely
ones. This process is repeated until n complete hypotheses are found. A pseudo-
code can be found in Algorithm 1.
The special case of n = 1 is the greedy translation method, where at every time

step the translation is extended with the single most likely target word. Even

8

2.2 Beam Search

Transformation

Global search:

êÎ1 = argmax
I,eI

1
∈E

{
Pr(eI1) · Pr(fJ

1 |eI1)
}

Transformation

Lexicon Model

Alignment Model

Sentence Length Model

Language Model

Pr(fJ
1 |eI1)

Pr(eI1)

Source Language Text

Target Language Text

fJ
1

êÎ1

Figure 2.1: The architecture of an SMT system. Using a lexicon model, an align-
ment model and a sentence length model, Pr(fJ

1 |eI1) can be estimated.
In combination with the estimation of Pr(eI1) by the LM, the most likely

target sentence êÎ1 can be determined. Image modified based on material
of the chair i6 at RWTH Aachen.

9

Chapter 2 Statistical Machine Translation (SMT)

Algorithm 1 A pseudo-code of the beam search algorithm

Require: n: beam size
Require: V : target vocabulary
Require: fJ

1 : source sentence

Require: p(·|·): trained model for Pr(êÎ1|fJ
1)

1: procedure Beam Search(n, V, fJ
1 , p)

2: t← 0
3: Bt ← [(1, <BOS>)] // the current beam
4: while |Bt.whereHypothesisComplete| < n do

5: t← t+ 1
6: Bt ← []
7: for (oldProb, partialHyp) ∈ Bt−1.whereHypothesisIncomplete do

8: for v ∈ V do

9: extendedHyp← [partialHyp; v]
10: newProbability ← p(extendedHyp|fJ

1)
11: Bt.append((newProbability, extendedHyp))

12: Bt ← Bt.orderDescendingByProbability()
13: Bt ← Bt[0 : n] // limit beam to n most likely hypotheses

14: return Bt

though this would be a very efficient search method, it does not allow to recover
from mistakingly chosen words, leading to suboptimal translations. By increasing
the beam size n, one can improve the overall probability of the final hypothesis.
Choosing a target word wi at time step i that does not have the highest probability
might allow to choose a target word wi+1 at time step i + 1 with much higher
probability than otherwise possible.

2.3 Automatic Evaluation Metrics

The evaluation of translations by different MT systems is a difficult task. Given
a set of hypotheses for the same source sentence translation, even human experts
often find it difficult to order them by quality. Additionally, human evaluation is
both expensive and time consuming when it is to be used for a meaningfully large
number of hypotheses.

Because the ability to quickly iterate and improve the systems is important,
automatic measurements had to be invented. In this work, we will evaluate the
performance of our systems using Bleu, Ter and perplexity (Ppl). Those are the
measures most widely used in MT research and do not require human interaction.
All three of them evaluate the hypotheses with respect to one or more provided

10

2.3 Automatic Evaluation Metrics

references. In the following sections, Bleu and Ter will be explained. Ppl will be
introduced in Section 3.4.1.

2.3.1 BLEU

The bilingual evaluation understudy (Bleu), proposed by Papineni et al. [2002],
is an automatic measure of the translation quality. It is based on the assumption
that the number of n-grams that occur both in the reference and the hypothesized
translation is an indicator for the translation quality. The score is computed as the
geometric mean of n-gram precisions and a brevity penalty that avoids translations
that are too short. Even though the original formulas allow for multiple reference
translations, we only use a single reference eI1 in this work.

Given a hypothesis êÎ1, the Bleu score can be computed as follows: First, one
determines the modified n-gram precisions. For every n-gram wn

1 in the hypothesis,

one takes the minimum of the occurrences of wn
1 in eI1 and êÎ1. This clipped count

is then divided by the number of n-grams that occur in êÎ1, leading to the formula

ModPrecn(e
I
1, ê

Î
1) =

∑
wn

1
min

{
c(wn

1 , e
I
1), c(w

n
1 , ê

Î
1)
}

∑
wn

1
c(wn

1 , ê
Î
1)

(2.14)

where c(a, b) is a count function providing the number of occurrences of a in b. The
brevity penalty BP (I, Î) is defined as

BP (I, Î) =

{
1 , if Î ≥ I

exp(1− I

Î
) , otherwise

(2.15)

Finally, the Bleu score is computed as follows:

BLEU(eI1, ê
Î
1) = BP (I, Î) · exp

(
N∑

n=1

wn logModPrecn(e
I
1, ê

Î
1)

)
(2.16)

= BP (I, Î) ·
N∏

n=1

ModPrecn(e
I
1, ê

Î
1)

wn (2.17)

where N is the maximum n-gram length and wn weights the influence of different
n-gram lengths. Usually, N = 4 and wn = 1

N
. Instead of a sentence-wise evaluation,

the Bleu score is commonly computed over the whole test corpus.
Although there is some criticism by Callison-Burch et al. [2006], most studies,

such as [Coughlin, 2003], come to the conclusion that Bleu correlates highly with
human evaluations.

11

Chapter 2 Statistical Machine Translation (SMT)

2.3.2 Translation Edit Rate (TER)

The Ter score, proposed by Snover et al. [2006], is an error metric based on the
Levenshtein distance as described in [Levenshtein, 1966]. Unlike Bleu, it does not
depend on counting n-grams. Instead, Ter is looking at the minimal number of
modifications that are needed to transform the hypothesis into one of the references.

The Ter score can be defined as

TER =
minimal number of edits

average number of words in the references
(2.18)

Edits can be insertions, deletions, substitutions and shifts. The first three are
applied to individual words, a shift is the movement of a continuous sequence of
words within the hypothesis. All kinds of edits are assigned an equal cost.

Because determining the exact Ter score would require exponential computing
power, a greedy approach can be applied. Snover et al. [2006] not only define this
approach but also introduce a human-targeted Ter that measures the translation
quality more realistically by using human assistance. However, due to the high
costs associated with any human interaction in the evaluation, this score is not
commonly used. Similar to Bleu, Ter scores are computed based on the whole
test corpus.

12

Chapter 3

Artificial Neural Network (ANN)

ANNs try to imitate the properties of human or animal brains. While certainly
different parts of the brain are responsible for different tasks, these responsibilities
are loosely defined. Furthermore, all parts consist of the same substructures, namely
neurons. ANNs equally consist of many individual artificial neurons.

3.1 Neuron

A neuron is the most simple individual part of any ANN. It has been proposed
by Rosenblatt [1957] who has used them to create a so-called simple perceptron,
a network with one layer. Similar to actual neurons in brains, they receive input
from each other. Once the incoming signals are strong enough, the neuron outputs
a signal itself, that is then consumed by other neurons. The threshold that defines
when a neuron starts to fire can vary between different neurons and is defined by
an activation function.

In its original version, the output is always either 0 or 1. Such an activation
function f is defined by a weight w and a threshold b. If and only if the input x
multiplied by the weight surpasses the threshold, the activation function emits 1.

f(x) =

{
1 , if wx > b

0 , otherwise
=

{
1 , if wx− b > 0

0 , otherwise
(3.1)

As an alternative to this step function, continuous functions can be used. Simple
and widely used non-linear functions are:

f(x) =
1

1 + exp(−wx− b)
= σ(wx+ b) (3.2)

f(x) = tanh(wx+ b) (3.3)

Figure 3.1 visualizes that these functions closely resemble the step function from
Equation 3.1.

13

Chapter 3 Artificial Neural Network (ANN)

−5 0 5
0

0.5

1

x

f
(x
)
=

{
1
,

if
x
>

0

0
,

ot
h
er
w
is
e

(a) A step function with w = 1
and b = 0

−5 0 5
0

0.5

1

x

f
(x
)
=

σ
(x
)

(b) The sigmoid function

−5 0 5
−1
0

1

x

f
(x
)
=

ta
n
h
(x
)

(c) The tanh function

Figure 3.1: Activation functions

3.2 Feedforward Neural Network (FFNN)

A neuron accepts an input and produces an output that can in turn be processed by
another neuron. Because the information constantly flows forward, these networks
are categorized as FFNNs. An FFNN with only one layer of neurons can only apply
a linear function on the input. Therefore, a network with no hidden layers can only
solve problems that are linearly separable. While simple logical operations like
AND and OR can be implemented, XOR requires a deeper network. In addition
to the input and output layer, a hidden layer has to be added. Because now the
output layer can apply a linear function to the non-linear output of the hidden
layer, more complex functions are representable. Exemplary implementations of
the logical AND, OR and XOR operations are shown in Figure 3.2.

Whether one single hidden layer is enough to allow representing all functions was
unclear until 1989, when Hornik et al. [1989], Cybenko [1989] proved that this is
indeed possible. This insight is known as the universal approximation theorem.

Theorem 1 (Universal Approximation Theorem)
Any feedforward network with one hidden layer using an arbitrary squashing func-
tion is capable of approximating any Borel measurable function from one finite di-
mensional space to another to any desired degree of accuracy, provided sufficiently
many hidden units are available.

As this theorem states, any function can be approximated, even though this might
require a large number of hidden units. For instance, Coates et al. [2011] train an
image recognition network with only one single hidden layer that is as good as the
state of the art. In practice, networks with more layers are used, because such a
deeper network requires less neurons in total. Once a certain number of layers is

14

3.3 Recurrent Neural Network (RNN)

b = −0.8

x1 x2

x1 ∧ x2

0.
5 0.5

(a) AND orperation

b = −0.5

x1 x2

x1 ∨ x2

1 1
(b) OR operation

b = −0.8

b = −0.8 b = −0.8

x1 x2

(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

1

-1 -1 1

1 1

(c) XOR operation

Figure 3.2: Single- and multilayer network implementations of the logical AND, OR
and XOR operations. The activation function is a step function. The
weights are written on the incoming arrows, the biases are written inside
of the neurons.

reached, the network is often called a deep neural network (DNN). However, there
is no specific threshold for this.
Because layers usually consist of more than one single neuron, defining their

formulas as in Equations 3.1 to 3.3 would become prohibitively complicated as every
neuron would require its own formula. Instead, multiple neuron values x1, . . . , xn
as well as the biases b1, . . . , bn that are in the same layer are summarized in one
single vector x ∈ R

n and b ∈ R
n, respectively. If all neurons use a sigmoid function

to determine their activation value, they can be described as

f(x) = σ(Wx+ b) (3.4)

where W ∈ R
m,n is a weight matrix, defining the weights of all m incoming connec-

tions for all n neurons in this layer. b is the bias vector and x is the input vector.
For better readability, the bias is often not written explicitly.

3.3 Recurrent Neural Network (RNN)

FFNNs have two inherent problems: They can not be applied to inputs of arbitrary
length and they can not remember previous inputs. However, sentences can be long,

15

Chapter 3 Artificial Neural Network (ANN)

RNN
(x1, x2, x3) (y1, y2, y3)

(h0, h1, h2)

(a) Original RNN

t = 1 t = 2 t = 3
h0

h1 h2
h3

y1 y2 y3x1 x2 x3

(b) Unrolled version of the RNN for 3 time steps

Figure 3.3: Unrolling of an RNN. In the unrolled version, all layers have the same
activation function and weight matrix.

and splitting them into separately processed inputs removes part of their context.
To avoid this issue, RNNs can be used. They differ from FFNNs such that their
output is fed back to their input. Therefore, the network is able to evaluate the
current input in the context of previously processed data. Because the activation
functions and weight matrices of RNNs are shared across all time steps, they can
even generalize to unseen sequence lengths.

Instead of feeding the whole output back to the input, an additional internal
memory ht can be added to the network. The resulting model can be described as

ht = a(Whht−1 +Wixt) (3.5)

yt = Wyht (3.6)

for a nonlinear function a and weight matrices Wh, Wi and Wy. xT
1 is the input

sequence. Every RNN can be converted to an FFNN for a given length of recur-
rence. For this, the layers are duplicated as often as needed. This implies that
RNNs are a special case of DNNs. The process of mapping the RNN to an FFNN
is called unrolling and is shown in Figure 3.3. In theory, such an RNN is able
to store information in ht indeterminately until it is needed at a later time step.
However, optimizing the weight matrix in a stable way that allows long-term de-
pendencies to have a sufficiently high influence on the network’s behavior can be
quite difficult. This is caused by the problem of exploding or vanishing gradients
during backpropagation through time (BPTT) (see Section 3.4.2). As the error is
propagated backwards through multiple time steps, it is repeatedly multiplied by
the weights. This causes the error to

1. increase exponentially if the weights are larger than 1

16

3.3 Recurrent Neural Network (RNN)

2. decrease exponentially if the weights are smaller than 1

For exploding gradients, the training will be very unstable. Vanishing gradients on
the other hand provide only little insight into the correct direction for the parameter
updates (see Section 3.4.2). Therefore, training them to minimize the loss value is
difficult. Hochreiter et al. [2001] show that an RNN as defined in Equations 3.5
and 3.6 necessarily either suffers from vanishing gradients or is unable to learn
long-term dependencies in the data. For a more detailed analysis of RNNs see
[Hochreiter, 1991]. In the following sections, we address some approaches that
overcome the challenges mentioned here.

3.3.1 Long Short-Term Memory (LSTM)

As stated above, RNNs have difficulties learning long-term dependencies. Ho-
chreiter and Schmidhuber [1997] have proposed a gate-based RNN, called LSTM,
to circumvent this issue. Because multiple variations of LSTMs exist and listing
them all would go beyond the scope of this work, the following description is based
on the setup described in [Graves, 2013] that is most widely used and includes the
extension by Gers et al. [2000]. However, in the following equations, we omit the
biases for simplicity.

The LSTM has an internal state ct. At every time step t, only minimal adjust-
ments are made to this state, ensuring that the gradient does not vanish. To be
concrete, the state ct is computed as

ct =

{
0 , if t = 0

ft ◦ ct−1 + it ◦ c̃t , otherwise
(3.7)

Where c̃t is known as the input candidate, containing new information. The
forget gate ft controls which parts of the previous state should be forgotten and
the input gate it indicates which parts of the current input candidate should be
added to the state.

If it = 0 and ft = 1, then ct = ct−1 and the error flow is constant. This
way, an LSTM can store information for arbitrarily long time intervals without
suffering from exploding or vanishing gradients. As described in [Hochreiter and
Schmidhuber, 1997], ct is also called the constant error carousel (CEC) of the
network. The output ht is defined as

ht =

{
0 , if t = 0

tanh (ct) ◦ ot , otherwise
(3.8)

Here, ot is an output gate. The gates are computed using sigmoid functions as
follows:

17

Chapter 3 Artificial Neural Network (ANN)

ot = σ
(
Woxt +Uoht−1 + Voct

)
(3.9)

it = σ
(
Wixt +Uiht−1 + Vict−1

)
(3.10)

ft = σ
(
Wfxt +Ufht−1 + Vfct−1

)
(3.11)

The input candidate is similarly defined:

c̃t = tanh
(
Wcxt +Ucht−1

)
(3.12)

In Equations 3.9 to 3.11 the additions of the cell state ct and ct−1, respectively,
are called peepholes. They are not part of the original definition of LSTMs but
were later added by Gers and Schmidhuber [2000] to allow the LSTM to access its
current state during the gate computation. The weight matrices Vo, Vi and Vf are
diagonal. A graphical representation of an LSTM cell can be seen in Figure 3.4a.
To increase the readability, we make the following definitions:

1. Mg = [Wg,Ug,Vg] ∀g ∈ {o, i, f}

2. Mc = [Wc,Uc]

3. c0 = h0 = 0, to avoid the case differentiations

The final equations for the forward pass of the LSTM in the order of their com-
putation are therefore:

ft = σ(Mf [x
T
t ,h

T
t−1, c

T
t−1]

T) (3.13)

it = σ(Mi[x
T
t ,h

T
t−1, c

T
t−1]

T) (3.14)

c̃t = tanh (Mc[x
T
t ,h

T
t−1]

T) (3.15)

ct = ft ◦ ct−1 + it ◦ c̃t (3.16)

ot = σ(Mo[x
T
t ,h

T
t−1, c

T
t]

T) (3.17)

ht = ot ◦ tanh (ct) (3.18)

3.3.2 Multi-Dimensional LSTM (MDLSTM)

The LSTM introduced in Section 3.3.1 processes a stream of vectors, one at a
time. This is helpful in use cases where the input can readily be represented as a
one-dimensional (1D) stream of data, such as the words within a sentence.

However, some data naturally has more than one dimension. Images, for example,
cannot easily be transformed to meaningful 1D data point sequences. Fortunately,

18

3.3 Recurrent Neural Network (RNN)

ct

Cell

× ht×c̃t

×

ft Forget Gate

itInput Gate otOutput Gate

xt

ht−1

xtht−1
xtht−1

xt
ht−1

(a) An LSTM cell

ct,t′

Cell

× ht,t′×c̃t,t′

×

ft,t′ Forget Gate λt,t′ Lambda Gate

it,t′Input Gate ot,t′Output Gate

xt,t′

ht,t′−1

ht−1,t′

xt,t′ ht,t′−1ht−1,t′
xt,t′ ht,t′−1ht−1,t′

xt,t′
ht,t′−1ht−1,t′ xt,t′

ht,t′−1ht−1,t′

(b) A two-dimensional LSTM (2DLSTM) cell

Figure 3.4: An overview of an LSTM and a 2DLSTM cell. The additional elements
and connections in the 2DLSTM cell are highlighted in blue. Figure
adapted based on [Graves, 2013].

19

Chapter 3 Artificial Neural Network (ANN)

input layer

hidden layer

(t)

(t)

(t− 1)

(a) Dependencies in a 1D RNN

input layer

hidden layer

(t, t′)

(t, t′)

(t− 1, t′)

(t, t′ − 1)

(b) Dependencies in a two-dimensional (2D) RNN

Figure 3.5: Dependencies in a 1D and 2D RNN. For two dimensions, the state
depends on two previous time steps: (t − 1, t′) and (t, t′ − 1). Figure
adapted from [Graves et al., 2007].

an LSTM can be extended to process multi-dimensional inputs. Graves et al. [2007]
propose the concept of a multi-dimensional RNN in general and an MDLSTM in
particular.

The time axes of a 2DLSTM extend in two directions. Therefore, the current
time step has to be specified by two indices. In this work, t and t′ represent the
horizontal and vertical axes respectively. At each time step (t, t′), a 2DLSTM does
not only depend upon its previous state in (t− 1, t′), but on the state at (t, t′ − 1)
as well, as depicted in Figure 3.5. A visualization of a 2DLSTM cell can be found
in Figure 3.4b.

For 2DLSTM, this adaptation results in the following formulas:

ht,t′ =

{
0 , if t = 0 ∨ t′ = 0

tanh
(
ot,t′ ◦ ct,t′

)
, otherwise

(3.19)

ot,t′ = σ
(
Woxt,t′ +Uoht−1,t′ +U ′oht,t′−1 + Voct,t′

)
(3.20)

it,t′ = σ
(
Wixt,t′ +Uiht−1,t′ +U ′iht,t′−1 + Vict−1,t′ + V ′i ct,t′−1

)
(3.21)

ft,t′ = σ
(
Wfxt,t′ +Ufht−1,t′ +U ′fht,t′−1 + Vfct−1,t′ + V ′f ct,t′−1

)
(3.22)

λt,t′ = σ
(
Wλxt,t′ +Uλht−1,t′ +U ′λht,t′−1 + Vλct−1,t′ + V ′λct,t′−1

)
(3.23)

c̃t,t′ = tanh
(
Wcxt,t′ +Ucht−1,t′ +U ′cht,t′−1

)
(3.24)

ct,t′ =

{
0 , if t = 0 ∨ t′ = 0

ft,t′ ◦ (λt,t′ ◦ ct−1,t′ + (1− λt,t′) ◦ ct,t′−1) + it,t′ ◦ c̃t,t′ , otherwise

(3.25)

20

3.3 Recurrent Neural Network (RNN)

An additional lambda gate λt,t′ (see Equation 3.23) is introduced. As written in
Equation 3.25, it controls whether the 2DLSTM focuses on the previous cell state
ct−1,t′ or on ct,t′−1.

After the whole 2D input has been processed, one usually has to reduce the
computed cell states ct,t′ ∈ R

T×T ′

to a sequence of vectors or even a single vector,
in order to process the output at a higher layer. This can be done by

1. summing over one of the axes, as done by Graves and Schmidhuber [2008]

2. taking the last row or column (c1,T ′ , . . . , cT,T ′ or cT,1, . . . , cT,T ′)

In the former case, to get a single vector, one can use an additional LSTM.
In the latter, one can directly use cT,T ′ . In theory, this state should contain the
information of the whole input, because it has been completely processed at this
point in time.
For notational simplicity, one can again make the following definitions:

1. Mg = [Wg,Ug,U
′

g,Vg,V
′

g] ∀g ∈ {i, f, λ}

2. Mo = [Wo,Uo,U
′

o,Vo]

3. Mc = [Wc,Uc,U
′

c]

4. c0,s = cs,0 = h0,s = hs,0 = 0∀s ∈ N

The equations can therefore be written in the more compact form:

ft,t′ = σ(Mf [x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T) (3.26)

it,t′ = σ(Mi[x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T) (3.27)

λt,t′ = σ(Mλ[x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T) (3.28)

c̃t,t′ = tanh (Mc[x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1]

T) (3.29)

ct,t′ = ft,t′ ◦ (λt,t′ ◦ ct−1,t′ + (1− λt,t′) ◦ ct,t′−1) + it,t′ ◦ c̃t,t′ (3.30)

ot,t′ = σ(Mo[x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T) (3.31)

ht,t′ = ot,t′ ◦ tanh (ct,t′) (3.32)

The 2DLSTM cells used in our experiments do not have peephole connections.

Implementation

To develop our models, we use our in-house implementation for neural machine
translation (NMT) that is based on the open source library Theano [Theano De-
velopment Team, 2016] and the framework Blocks [van Merriënboer et al., 2015].

21

Chapter 3 Artificial Neural Network (ANN)

(a) Dependencies

7 8 9

4 5 6

1 2 3

(b) Ordered Processing

3 4 5

2 3 4

1 2 3

(c) Parallel Processing

Figure 3.6: Parallelization of a 2DLSTM. (a) depicts the dependencies of each cell in
the 2DLSTM, the arrows indicate the necessary flow of information. (b)
visualizes a possible order to compute the cell values. (c) is a parallelized
computation order. As the cells in the minor diagonals do not depend
upon each other, they can be computed in parallel. Figure adapted
from [Voigtlaender et al., 2016].

Theano optimizes the execution speed of training and decoding by using a com-
putational graph. This graph is created once at the setup of the experiment and
determines the specific order of mathematical operations. Theano then optimizes
this graph with respect to speed and computational stability. It will eg. completely
remove long computations, that are multiplied by 0. This characteristic allows high
flexibility during development while still ensuring fast execution.

A further speedup can be gained by utilizing the graphics processing unit (GPU)
as it is built to support very fast and parallel matrix operations. Theano takes care
of this for most operations automatically and replaces them with their respect-
ive GPU implementation. However, Theano does not support MDLSTM, so their
computation would mostly rely on the central processing unit (CPU).

The RWTH extensible training framework for universal recurrent neural networks
(RETURNN) [Doetsch et al., 2016] solves this problem. It offers an implementa-
tion of multidirectional 2DLSTM that does not only heavily utilize the GPU but
also parallelizes the computation of different 2DLSTM-cells. If the 2DLSTM is
computed from the topmost left corner to the rightmost bottom corner, all cells in
the minor diagonals are independent from each other and can therefore be com-
puted simultaneously. This optimization is described in [Voigtlaender et al., 2016]
and visualized in Figure 3.6. It reduces the computational complexity of an n×m
2DLSTM from O(nm) to O(n+m).

22

3.4 Training

3.3.3 Gated Recurrent Unit (GRU)

While LSTM solves the problem of long-term dependencies, it is relatively complex.
Cho et al. [2014] have proposed the GRU that circumvents the gradient problem
just like an LSTM but has a simpler structure. They combine the output ht and
cell state ct into a single vector h′t:

h′t =

{
0 , if t = 0(
1− zt

)
◦ h′t−1 + zt ◦ h̃′t , otherwise

(3.33)

where

h̃′t = tanh
(
Whxt +Uh

[
rt ◦ h′t−1

])
(3.34)

rt = σ
(
Wrxt +Urh

′

t−1

)
(3.35)

zt = σ
(
Wzxt +Uzht−1

)
(3.36)

rt is called the reset gate of the GRU. zt is a update gate that replaces the
input and forget gate of an LSTM cell. Wh, Wr, Wz, Uh, Ur, Uz are weight
matrices. Chung et al. [2014] show that a GRU performs as good as LSTM while
needing less free parameters, and that both outperform a simple RNN. ht will be
the name of another variable as well (see Section 4.2). To avoid this conflict in
naming conventions, the state ht of the LSTM and h′

t of the GRU will both be
referred to as at from now on. The notation at = RNN(xt,at−1) will be used to
refer to the output at given some input xt where the previous RNN state was at−1.
xt may be a concatenation of multiple inputs. For LSTM, the internal memory cell
is not explicitly written.

3.4 Training

Because common architectures are deep and have large weight matrices, they have
several millions of parameters. Once the structure of a neural network is defined,
these are initialized with random values. Afterwards, they are trained to improve
the performance of the network.

At each step, multiple examples from the training set are bundled in one batch.
The network calculates the predicted output ŷ for each example in the batch. For
supervised learning, the correct labels y are known. They can be used to assess
how closely the prediction resembles the optimal classification. To this end, a
predefined cost or loss function L is used. Then, the gradient of this cost function
is calculated with respect to the individual network’s parameters. This gradient
indicates whether the values of the parameters have to be increased or decreased in

23

Chapter 3 Artificial Neural Network (ANN)

−5 0 5

0

50

100

150

(-2, 96)

x

f
(x
)

−5 0 5

0

50

(-2,-32)

x

f
′ (
x
)

Figure 3.7: The gradient indicates the direction of the update. Because f ′(−2) < 0,
x has to be increased to get closer to the local optimum.

order to reach a lower resulting loss function value. For a positive gradient value,
the parameter has to be decreased, for a negative, it has to be increased. Figure 3.7
visualizes this principle. Finally, the parameters are updated into the previously
determined directions and a new batch is used to repeat this process. The training is
stopped after a predefined number of iterations or once the parameter’s values have
converged. In addition to the training set, one uses a development set to assess
the performance of the network. It consists of sentences that are not included
in the training set. It is important to stop the training once the performance
on the development set starts to decrease. Otherwise, one risks that the model
starts to overfit. It looses its ability to generalize beyond the training samples and
instead only memorizes the true labels from the training set. This leads to a worse
general performance. To prevent the network from memorizing the true labels in
the development or test sets, the sentences in these sets are not used during the
training.
In the following sections, we describe the most commonly used loss function and

cover the gradient computation for FFNNs and RNNs in detail. Additionally, we
describe three different algorithms for the weight updates.

3.4.1 Loss Function

To assess how close the hypothesis of the network is to the ground truth, a loss
function L has to be applied. The most common choice for L is the cross-entropy.
For a target and source sentence pair (e, f), it is defined as

L(e, f) = − log(p(en|fn)) (3.37)

For machine translation (MT), Ranzato et al. [2015] list two drawbacks of train-
ing using the cross-entropy. Firstly, during the training, the network is supplied

24

3.4 Training

with the first symbols in the ground truth to complete partial hypotheses. In the
decoding phase however, the previous output is used to complete partial sequences.
Therefore, errors can accumulate. The second issue is that the cross-entropy differs
from the final evaluation function. Whereas the cross-entropy is computed word-
wise, the scoring functions described in Section 2.3 operate on the whole corpus.
Shen et al. [2016] propose minimum risk training (MRT) to avoid these problems.
They introduce an additional term to the loss function that is based on the expec-
tation of the evaluation metric such as Bleu or Ter. However, cross-entropy is
still widely used and is applied in our experiments.

Perplexity (PPL)

The Ppl can be used as a measure of how close the probability distribution com-
puted by the neural network (NN) is to the correct prediction. It is based on the
cross-entropy and can be computed as

PPL = exp

(
− 1

N

N∑

n=1

log(p(en|fn))
)

(3.38)

where N is the total number of symbols in the reference corpus and en and fn are
the target and source sentences, respectively.

The Ppl can be seen as an indicator of how sure the network is about its predic-
tion. If most of the probability mass is focused on the correct prediction, the cost
and therefore the Ppl will be low. If the network distributes the probability mass
over multiple words, the Ppl will increase, even if the correct target word is still
predicted as the most likely one.

Because this measure does not require that the test corpus is actually decoded
(as an input, only the source and part of the reference are used), it requires less
computational time.

If the cross-entropy and therefore the Ppl has a high value, it means that certain
words of the target sequence are falsely given too low probabilities. Therefore, by
minimizing the cross-entropy and Ppl, the network is improved. This process is
equivalent to maximizing the log-likelihood of the translation.

3.4.2 Optimization

In order to achieve a fast optimization of the NN that ultimately finds a good local
optimum, several key aspects are of importance. The initial parameters should be
chosen in a way that does not hinder the training process. To obtain information
about the needed updates, all functions have to be differentiable. And finally, the
weight update should ensure a fast and steady training process. The following
sections will explain these aspects in more detail.

25

Chapter 3 Artificial Neural Network (ANN)

Initialization

At the beginning of the training, all parameters of the model have to be initialized.
For this, one can choose many distributions. Popular choices are

1. Random isotropic gaussian initialization: A normal distribution with mean 0
and a low standard deviation (eg. 0.01). This is the most simple approach as
it does not require any knowledge of the network

2. Xavier initialization: This initialization has been proposed in [Glorot and

Bengio, 2010]. A uniform distribution with the boundaries ±
√
6√

nj+nj+1

where

nj and nj+1 are the numbers of neurons in this layer and the layer above,
respectively. This causes the variance of the gradient to be stable. Otherwise
it might increase or decrease, hindering the training. It is sometimes referred
to as a glorot distribution as well.

After the network is initialized, the parameters are repeatedly updated until a local
optimum is reached where the output of the network is close to the correct result.

Whatever initialization is chosen, it is important not to set all weights to the
same value, like 0. This would cause the gradient and therefore the updates of all
weights to be the same. Only by introducing asymmetry can the network assign
different functions to different neurons.

Backpropagation

In order to determine the direction of the parameter updates, the gradient has to
be computed. In Section 3.1 the formula for a single neuron is described. Clearly,
the simple function f(x) = σ(Wx + b) can easily be derived. The derivation of
σ(x)k for x ∈ R

K and 1 ≤ k ≤ K with respect to xk is σ(x)k · (1 − σ(x)k), the
derivation of Wx with respect to W and x can be found in Appendix A.1.1.
Multiple layers of neurons, as described in Section 3.2, only require chaining mul-

tiple neuron computations. To compute the gradients with respect to parameters
of deeper layers, a method called back-propagation is used. Back-propagation re-
peatedly applies the chain rule of calculus to compute all necessary gradients one
after another. It was popularized by [Rumelhart et al., 1986]. However, the concept
in general was already known before.

Theorem 2 (Chain Rule)
For a given function h(x) = f(g(x)) with scalar x, the derivative can be defined as
h′(x) = f ′(g(x)) · g′(x).

When computing the gradients with respect to parameters in RNNs, one has to
take the recurrence into account. There, one has to start at the last time step and

26

3.4 Training

move backwards in time until time step 1. Since, in this process, the gradients
are propagated backwards through time, this version of back-propagation is called
backpropagation through time (BPTT). The gradients with respect to parameters
within the LSTM and 2DLSTM are derived in Appendices A.1.2 and A.1.3.

Current popular frameworks like Theano [Theano Development Team, 2016] are
able to perform this computation automatically.

Weight Update

As described above, after determining in which directions the parameters have to
be changed, they are increased or decreased by a small amount ∆wt .

wt = wt−1 +∆wt (3.39)

How large this amount is, determines the speed of convergence as well as the
ability to reach a good local optimum. If the update is too small, the network
needs to be updated extremely often, increasing the training time. The upside
is that the network can exactly follow the slope of the cost function, eventually
finding a good local minimum. If the update step size is increased, the network
makes larger steps into the determined direction. In the best case, this reduces the
training time because the local optimum is found much faster. However, if the step
size is too large, one risks overshooting an optimum, meaning that the network
might start to oscillate around an optimum or miss it completely. If it only causes
the network to settle on another local minimum, the impact is negligible. It is more
severe if the overshooting causes the network to climb the hills in parameter space,
causing it to perform worse. This situation is shown in Figure 3.8.

Different techniques have been proposed to determine by how much each para-
meter should be updated, in order to maximize training speed while minimizing
the risk of overshooting an optimum. This subsection presents three different op-
timization techniques. More details can be found in [Ruder, 2016].

Stochastic Gradient Descent (SGD) The most simple option to determine ∆wt

is to choose it based on the current gradient ∂E
∂wt

where E is the value of the loss
function. A large gradient may indicate that a vast enhancement is possible by
drastically changing the parameter. A small gradient may imply that the cost
will not decrease much by updating this parameter. This reasoning leads to the
following formula:

∆wt = −α ·
∂E

∂wt
(3.40)

where α > 0 is the learning rate, a hyperparameter that is defined at the beginning
of the training. Algorithm 2 provides a pseudo-code of SGD.

27

Chapter 3 Artificial Neural Network (ANN)

0

2
· 1
0
−
2

4
· 1
0
−
2

6
· 1
0
−
2

8
· 1
0
−
2

0.
1

0

1

2

3

x

L(
x
)

Figure 3.8: Overshooting during parameter optimization. At each update, increas-
ing x appears to be beneficial. By overshooting the local optima, each
update causes the network to perform worse.

Algorithm 2 A pseudo-code of SGD.

Require: α: learning rate
Require: θ0: parameter set
Require: f(θ): network function
1: procedure SGD
2: t← 0
3: while θt not converged do

4: t← t+ 1
5: gt ← ∇θft(θt−1)
6: θt ← θt−1 − α · gt
7: return θt

28

3.4 Training

Momentum The default SGD method uses one universal learning rate for all
parameters. However, this might not be optimal. If the path to a local optimum
leads through a long sharp valley, one parameter (θ1) has to be changed a lot to
slowly reach a better point and even small changes to other parameters (θ2, θ3) cause
a huge decline in quality. In this situation, the following problem arises [Sutton,
1986].

The absolute value of the gradients of θ2 and θ3 will be large, causing equally
large updates to these parameters. This carries the danger of overshooting and
losing the path to the local optimum. The absolute value of the gradient of θ1 on
the other hand will be small, causing infinitesimal updates and improvements. In
order to minimize the risk of overshooting the walls of the valley, the learning rate
has to be reduced, slowing down the training even more. The updates will thereby
mostly consist of oscillating between the two valley walls with minimal progress
towards its end. This problem can be resolved by using momentum as proposed by
Rumelhart et al. [1988]. They define the weight update to be determined as

∆wt = β ·∆wt−1 − α · ∂E
∂wt

(3.41)

for a given learning rate α > 0 and decay rate 0 ≤ β < 1.
Instead of computing the parameter update solely based on the current gradi-

ent, previous gradients are taken into account as well. If multiple updates in the
same direction have been applied consecutively, the update for this parameter is
increased. However, if the direction of the gradient changes regularly, they cancel
each other out and the momentum β · ∆wt−1 is small, reducing the update size.
At the same time, the effect of previous gradients decreases exponentially with
every time step, because they are repeatedly multiplied with β. A pseudo-code of
momentum is shown in Algorithm 3.

Adaptive Moment Estimation (Adam) Adam has been proposed by Kingma and
Ba [2014] as an adaptive optimization technique. In addition to storing the expo-
nentially decaying gradient of the past iterations like momentum, it also computes
an exponentially decaying average of the past squared gradients. They are estima-
tions of the first and second moment of the gradients. Because these averages are
initialized with zeros, they are biased to zero during the first iterations. This issue
becomes larger when the decay rate of previous gradients is chosen to be small.
This is counterbalanced by bias-correcting them, as can be seen in the pseudo-code
in Algorithm 4.

The improvement of Adam over momentum is its ability to approximately limit
the step size to the learning rate value, avoiding too large updates to the paramet-
ers. However, Reddi et al. [2018] recently showed that Adam does not necessarily

29

Chapter 3 Artificial Neural Network (ANN)

Algorithm 3 A pseudo-code of momentum

Require: α: learning rate
Require: β ∈ [0, 1): decay rate
Require: θ0: parameter set
Require: f(θ): network function
1: procedure Adam
2: w0 ← 0
3: t← 0
4: while θt not converged do

5: t← t+ 1
6: gt ← ∇θft(θt−1)
7: ∆wt ← β ·∆wt−1 − α · gt
8: θt ← θt−1 +∆wt

9: return θt

Algorithm 4 A pseudo-code of Adam. Taken from [Kingma and Ba, 2014]

Require: α: learning rate
Require: β1, β2 ∈ [0, 1): decay rate
Require: θ0: parameter set
Require: f(θ): network function
1: procedure Adam
2: m0 ← 0
3: v0 ← 0
4: t← 0
5: while θt not converged do

6: t← t+ 1
7: gt ← ∇θft(θt−1)
8: mt ← β1 ·mt−1 + (1− β1) · gt
9: vt ← β2 · vt−1 + (1− β2) · g2t

10: m̂t ← mt/(1− βt
1)

11: v̂t ← vt/(1− βt
2)

12: θt ← θt−1 − α · m̂t/(
√
v̂t + ǫ)

13: return θt

30

3.5 Practical Observations

converge to an optimum. As this is a new finding and Adam is currently often used,
we applied Adam in our experiments (see Chapter 6).

3.5 Practical Observations

Once a convergence is noted, there are several possibilities to further improve the
network. One can, for example:

1. Continue the training with a decreased learning rate, thereby allowing the
network to finely adjust its parameter values. If this is done repeatedly, it is
called annealing (see eg. [Bahar et al., 2017]).

2. Average the parameters of multiple snapshots from a single training run.

For the second option, one has to save multiple snapshots of the model during
the training process. This technique was first reported by Utans [1996] and then
rediscovered by J.-D. et al. [2016]. It is likely that the n snapshots of a single training
run all cluster around the same local optimum. By averaging all parameters of the
models, individual small errors can be evened out.

Further improvement is possible by training multiple different models and build-
ing an ensemble. In an ensemble, the scores of all used models are combined at
every time step to generate the final hypothesis [Hashem and Schmeiser, 1995].
This has the benefit of reducing the output’s variance and thereby increasing the
accuracy. The models do not necessarily need to be trained on the same data and
may have a different internal structure. However, they have to use the same output
vocabulary.

31

Chapter 4

Neural Machine Translation (NMT)

The models and techniques explained in Chapter 3 can be applied to the field of
machine translation (MT). In the following sections, we will describe commonly
used network architectures for NMT.

4.1 Encoder-Decoder Architecture

Many neural network (NN) architectures require to limit the context of sequences.
This is in conflict with the nature of languages, because sentences can be unres-
trictedly long.

To avoid having to define a maximum context length like in the feedforward
neural network (FFNN) language model (LM) in [Bengio et al., 2003], the most
common NMT systems are based on the encoder-decoder architecture. It is com-
posed of two long short-term memory (LSTM) cells, as described in [Sutskever
et al., 2014, Cho et al., 2014]. Given a source sequence fJ

1 = f1, . . . , fJ and a
target sequence eI1 = e1, . . . , eI , the encoder of the encoder-decoder strategy reads
the source sequence and aims to encode it into a set of vectors. The decoder then
generates the variable-length target sequence. A similar technique is described in
[Kalchbrenner and Blunsom, 2013], even though they use a convolutional neural
network (CNN). In the following, we describe the encoder-decoder architecture in
more detail. For better readability, we omit weights and biases in the equations.

4.1.1 Encoder

The task of an encoder is to generate a summary of the whole source sentence fJ
1

that can then be used by the decoder to create the target hypothesis. This is done
in two steps:

1. Embed the one-hot vectors that are the network’s input

2. Iterate over all embeddings using an LSTM and use its last state as the
summary of the source sentence

33

Chapter 4 Neural Machine Translation (NMT)

The input to the network is a stream of one-hot vectors. Such a one-hot vector
fj has the size |Vs| of the source vocabulary Vs and is defined as:

(fj)n =

{
1 , if n = z

0 , otherwise
(4.1)

where z is the index of fj in the vocabulary.
To reduce the size of the handled vectors and to provide information about the

words, these one-hot vectors are multiplied to a trainable shared embedding matrix
Wenc. The resulting vector Wencfj is a compact representation of the input word
fj that lies in the same shared vector space as all other embedded source words.
Afterwards, an LSTM iterates over the output of the embedding layer one word
at a time, accumulating a summary of the sentence. By repeatedly applying the
following formula, the complete source sentence may be stored in hJ .

hj = LSTM(fj ,hj−1) (4.2)

4.1.2 Decoder

After the whole source sentence has been summarized by the encoder, the memory
state s0 of the decoder LSTM is initialized based on the last state of the encoder
LSTM, as written in Equation 4.3. The decoder LSTM is then used to predict the
next target word. To this end, it receives the previous target word ei−1 as an input.
Its state is used as an intermediate vector ti. It is transformed to a vector with the
size |Vt| of the target vocabulary Vt by another matrix Wdec. In order to transform
ti to a normalized probability distribution that indicates how likely each word in
the target vocabulary is to be the next target word, a softmax layer is applied. The
relevant formulas are therefore:

s0 = tanh (hJ) (4.3)

ti = LSTM(ei−1, ti−1) (4.4)

Pr(ei|ei−1
1 ,f I

1) = softmax(ti) (4.5)

where the softmax function is defined as

softmax : RK → [0, 1]K (4.6)

softmax(x)m =
exp(xm)

∑K
k=1 exp(xk)

(4.7)

The structure of the whole encoder-decoder network is depicted in Figure 4.1.

34

4.2 Attention-based NMT

f1

Wenc

f2 f3 <EOS>

Wdec

ê1 ê2 ê3 ê4 <EOS>

<EOS>

W ′

enc

e1 e2 e3 e4

Encoder LSTM

Decoder LSTM

Figure 4.1: Structure of an encoder-decoder network. The input sentence is (f1, f2,
f3), the generated output is (ê1, ê2, ê3, ê4). During training, the correct
target words eI1 are fed back to the decoder LSTM. Image adapted from
[Sutskever et al., 2014].

4.2 Attention-based NMT

As depicted in Figure 4.1, using an encoder-decoder system requires that all the
information of the source sentence fJ

1 is encoded in a single fixed-sized vector hJ .
This is apparent from the Equations 4.2 to 4.4 as well. The only connections of the
decoder LSTM to the source sentence is hJ . If not all information is captured, the
resulting prediction will not reflect the source correctly.

This poses an obvious problem. As the source sentence becomes longer, it con-
tains more information. Because the size of hJ is fixed, the network becomes unable
to encode the whole source sentence, and forgets parts of it. Bahdanau et al. [2014]
show that the performance of an encoder-decoder system decreases drastically for
long sequences.

As a remedy, they propose a different architecture. Instead of calculating a fixed
source summary once at the beginning and using it for the whole decoding process,
they calculate different context vectors ci for every time step and feed it to the
decoder LSTM. This enables the network to focus on different parts of the source
sentence at each time step and avoids losing available information. Therefore, it
behaves similar to human translators. Instead of first remembering the complete
source sentence and then writing down the translation, they repeatedly look up
different parts of the source.
In the following sections, we describe the modifications to the different model

parts that are needed for attention.

35

Chapter 4 Neural Machine Translation (NMT)

4.2.1 Bidirectional Encoder

Instead of a single LSTM that processes the source words fJ
1 from left to right,

Bahdanau et al. [2014] propose to use an additional LSTM to iterate over fJ
1 from

fJ to f1. We write forward
−−−−→
LSTM to denote the LSTM that iterates from j = 1 to

j = J and backward
←−−−−
LSTM for the LSTM that iterates from j = J to j = 1. The

states of both LSTM cells are written as
−→
hj and

←−
hj accordingly.

−→
hj =

{
0 , if j = 0
−−−−→
LSTM(fj ,

−→
hj−1) , otherwise

(4.8)

←−
hj =

{
0 , if j = J + 1
←−−−−
LSTM(fj ,

←−
hj+1) , otherwise

(4.9)

hj =

[−→
hj←−
hj

]
(4.10)

The concatenation of the states
−→
hj and

←−
hj corresponds to a summary of the whole

source sentence with focus on the current source position j. It therefore provides a
more complete context for fj than could be gained using a one-directional encoder.

4.2.2 Attention Layer

The task of the attention layer is to compute a context vector ci for every decoder
time step i. It is a weighted average of all source representations hJ

1 that have been
created by the bidirectional encoder. The weighting algorithm allows the network
to pick those source representations that are the most important for the next target
word prediction. To compute the weighted average, the attention layer requires a
decoder state si−1. How this state is computed is explained in Section 4.2.3.

At every time step i, a scalar energy value ẽj,i is determined for each source
representation hj .

ẽj,i = vT tanh(si−1,hj) (4.11)

where vT is a weight vector. Because this computation depends on the previous
decoder state si−1, ẽj,i can vary between different time steps. It indicates how much
of hj should be used for the next context vector ci, so a high energy implies a focus
on the corresponding source representation.
The energies ẽ1,i, . . . , ẽJ,i are normalized using a softmax layer. The α1,i, . . . , αJ,i

are scalar weight values.

αj,i =
exp(ẽj,i)∑J

j′=1 exp(ẽj′,i)
(4.12)

36

4.2 Attention-based NMT

Using these weights, the context vector ci is computed as a weighted sum of all
source representations hJ

1 .

ci =
J∑

j=1

αj,ihj (4.13)

4.2.3 Decoder

Once the context vector ci is determined, it is combined with the previous decoder
state si−1 and the previous target word ei−1 and fed through a readout layer. It
computes the intermediate vector t̃i as a linear combination of these three inputs.

t̃i = ci + si−1 + ei−1 (4.14)

where Wt, Ut and Vt are weight matrices.
The output t̃i is passed through a maxout layer as proposed by Goodfellow et al.

[2013]. There, the values are separated in groups of size k, and only the largest
value of each group is passed forward.

ti = maxout(t̃i) =
[
max

{
t̃ilk, . . . , t̃ilk+k−1

}]T
l=0,...,N

k

(4.15)

where t̃ ∈ R
N . Then, a softmax layer is applied to determine the most likely next

target word ei.
Pr(ei|ei−1

1 ,fJ
1) = softmax(ti) (4.16)

Finally, the new decoder state si is computed as the output of the decoder LSTM,
given the target word ei and te context vector ci

si = LSTM([eTi , c
T
i]

T , si−1) (4.17)

Figure 4.2 depicts the flow of information in the attention-based NMT system.
The weighted average of all source word representations is updated at each time
step, resulting in different context vectors for each target word.

37

Chapter 4 Neural Machine Translation (NMT)

.

ei+1 si+1

.

ei si

α(j|i + 1), j = 1, . . . , J ci+1

ei−1 si−1

α(j|i), j = 1, . . . , J ci

.

α(j|i − 1), j = 1, . . . , J ci−1

.

h... hj−1 hj hj+1 h...

f... fj−1 fj fj+1 f...

Figure 4.2: The structure of a network using attention. The bidirectional encoder
and the decoder are marked yellow. At each time step, the context vec-
tor ci is recomputed using a weighted sum of all source representations
hJ
1 .

38

Chapter 5

Extensions of the Attention Mechanism

In Equation 4.11, one can see that the attention energy of a given source position j
is not used to determine how much attention energy should be given to a different
source position j′ with j′ 6= j. The determined energies do influence each other
in the normalizing step (see Equation 4.12). However, this only results in a minor
dependency. It is not possible to attend to a specific source position only because
attention is payed to another position as well.

We construct and evaluate extensions of the usual neural network (NN) structure
that do not suffer from said shortcoming. For this, we add dependencies to the
computation of the context vector that allow the network to take into account how
much it attended to other source positions.

A theoretic example for a situation where this might be beneficial is the sentence
“The house is big” that should be translated into German. The first target word
is likely dependent upon the first source word, so attention is paid to “The”. As
German has three different articles (“der”, “die” and “das”), the correct one has to
be chosen based on the following noun. If the NN can access previous attention, it
may have learned this dependency and decide to also attend to the noun “house”,
resulting in the decision to use the neuter article “das”. In the similar sentence
“Whose house is big?”, the correct translation of “Whose” (“Wessen”) does not
depend upon the following noun. The NN can notice this and does not need to
attend to it. Because the usual attention mechanism attends to all words in parallel,
it cannot leverage this knowledge. It always has to attend to the noun as well, in
case the previous source word requires it.

Additionally, we enable the attention layer to save information across time steps.
This may theoretically be helpful for the translation of the French sentence “Je ne
veux pas arrêter” into the English sentence “I do not want to stop”. The French
“ne pas” usually encapsulates the verb that is negated. Knowing that at the last
decoding time step attention was payed to “ne . . . pas” could make it easier for the
model to focus on the correct verb. This may prevent it from attending to the
wrong one and inadvertently translating the sentence as “I do not stop to want”.

A third positive aspect of the extended attention layer may be the ability to
avoid over- and under-translations. They occur if the network translates the same

39

Chapter 5 Extensions of the Attention Mechanism

parts of the source sentence multiple times or omits them completely. By storing
the knowledge of which source words have been attended to, the network may learn
the concept of fertility. It would then try to attend to all source positions at least
once, but not multiple times, thus avoiding over- and under-translations.

Some of our modifications are based upon an unpublished paper by Zhang et al.
[2016]. They propose to remove the attention mechanism that is described by
Bahdanau et al. [2014] and replace it with a layer that iterates over the source
representations. This technique is explained in Section 5.2. Then, we extend their
work with various architectures and dependencies. We apply both long short-term
memory (LSTM) and gated recurrent units (GRUs) as the attention layer and
generalize the architecture to two-dimensional LSTM (2DLSTM) attention. Finally,
in Section 5.4, we propose a novel architecture that only uses a single 2DLSTM and
no explicit encoder or decoder.

5.1 Recalculating the Encoder State

In the vanilla encoder-decoder attention architecture, the source sentence is encoded
once at the beginning of the translation, as described in Section 4.2. This evidently
implies that the source representation is independent from the decoder state and
not updated to reflect the current process of the translation.

We propose to make the source representation dependent on the decoder state.
To achieve this, all hj are recomputed at every decoding time step i. The rest of the
network remains the same as in the encoder-decoder architecture with attention.
Thus, the equations for the encoding layer (formerly Equations 4.8 to 4.10) can be
expressed as:

−→
hj,i =

{
0 , if j = 0
−−−→
RNN([fT

j ; s
T
i−1]

T ,
−→
hj−1,i) , otherwise

(5.1)

←−
hj,i =

{
0 , if j = J + 1
←−−−
RNN([fT

j ; s
T
i−1]

T ,
←−
hj+1,i) , otherwise

(5.2)

hj,i =

[−→
hj,i←−
hj,i

]
(5.3)

5.2 One-Dimensional (1D) Attention

Zhang et al. [2016] propose to use a GRU layer to replace the usual attention
mechanism. Instead of predicting attention weights that are then used to com-
pute a weighted sum of all source representations, the GRU should summarize the

40

5.2 One-Dimensional (1D) Attention

necessary parts of the source sentence directly. The following explanations are for-
mulated in the more general form of an recurrent neural network (RNN). All the
concepts can easily be transferred to different recurrent setups. In our experiments,
we evaluate the performance of both GRU and LSTM, respectively.

The attention mechanism as described in [Bahdanau et al., 2014] computes the
energies based on the previous decoder state and the source representations. This
is shown in Equation 4.11. Zhang et al. [2016] initialize the state a0,i of an RNN
with the decoder state. They argue that the RNN can use this information to
assess which source words are important at the current time step and which are
not. It does so by controlling how much of the current source word is added to the
RNN state. Therefore, they use the RNN to iterate over all source representations
hJ
1 . Once all source words have been processed, either the final state aJ,i or a

combination of multiple states aj,i is used as the context vector ci. If the last state
is used, this leads to the following equations.

a0,i = tanh(si−1) (5.4)

aj,i = RNN(hj ,aj−1,i) (5.5)

ci = aJ,i (5.6)

Alternatively, Zhang et al. [2016] compute ci as the average of all a1,i, . . . ,aJ,i.

ci =
1

J

J∑

j=1

aj,i (5.7)

As explained in the introduction, the network might benefit from storing infor-
mation about the attention at time step i, in order to use it at a later time step
i′ with i′ > i. This can be achieved by storing it in the context vector ci. By
copying the information to the decoder state si, the network will be able to access
the stored knowledge in the attention layer at time step i + 1. A visualization of
such an extended attention layer using an LSTM is shown in Figure 5.1.

Using the target word ei−1 instead of the decoder state si−1 to initialize the RNN
results in a bad performance. In such a model, the attention layer does not know
about the complete target history and can therefore not correctly determine the
context vector.

5.2.1 Additional Attention Layer

Zhang et al. [2016] compare both using the last state aJ,i and using the average of

all states 1
J

∑J
j=1 aj,i as the context vector ci. They come to the conclusion that

the former is the superior configuration.
In order to verify their findings, we generalize the technique of computing the

average of all RNN states to a weighted sum. Given the decoder state si−1 and

41

Chapter 5 Extensions of the Attention Mechanism

ei+1 si+1

ei si

ci+1

ei−1 si−1

aj−1,i aj,i ci

ci−1

h... hj−1 hj hj+1

f... fj−1 fj fj+1

LSTM

Figure 5.1: 1D attention using an LSTM. The encoder and decoder are highlighted
yellow. At time step i, one LSTM iterates over all source represent-
ations hJ

1 . The final state aJ,i is used as the context vector ci. The
initialization of the LSTM based on the decoder state si−1 is omitted
for simplicity. The flow of information at time step (j, i) is highlighted
in red.

the RNN states a1,i, . . . ,aJ,i, one can compute a weighted average analogue to the
attention mechanism by Bahdanau et al. [2014] in Equations 4.11 to 4.13:

ẽj,i = vT tanh ([sTi−1;a
T
j,i]

T) (5.8)

αj,i =
exp(ẽj,i)∑J

j′=1 exp(ẽj′,i)
(5.9)

ci =

J∑

j=1

αj,iaj,i (5.10)

where vT is a weight vector. The simple arithmetic mean of all RNN states is a
special case of this. It can be simulated by the network by outputting the same ẽj,i
regardless of si−1 or aj,i.

42

5.3 Two-Dimensional (2D) Attention

5.2.2 Providing the Decoder State

The RNN state is initialized with the decoder state in order to provide the target
history. Alternatively, either the decoder state or the last target word could be
appended to the RNN’s input. This would still allow the network to use the target
information within the attention layer. When the decoder state is appended, the
Equations 5.4 and 5.5 are replaced by

a0,i = z (5.11)

aj,i = RNN([hT
j ; s

T
i−1]

T ,aj−1,i) (5.12)

where z can either be a trainable parameter, or a vector of zeros.

5.3 Two-Dimensional (2D) Attention

In Section 5.2 we show that the network is able to remember its attention from
previous decoding time steps by storing it in the context vector and copying it
to the decoder state. However, this process is not only complex and therefore
potentially difficult for the network to learn and leverage. The network also requires
the decoder state si−1 to contain both the target history and knowledge about the
previous attention distribution. This might be harmful during the actual prediction
of the next target word as described in Equations 4.14 and 4.17.

In addition to this observation, we notice that during the computation of the
context vector, all the needed information is available if the whole source sentence,
and all previously generated target words are given. This gave rise to the idea to
use a 2DLSTM to process these two sequences.

We arbitrarily decide the dimension that depends on the source sentence to be the
first dimension. The second dimension therefore depends on the target sequence.
This choice does not influence the training. Defining the purpose of each dimension
will simplify the following discussions. By iterating in the direction of the first
dimension, the 2DLSTM learns about all source words. The information about the
previously hypothesized target words is supplied by the second dimension. Within
the 2DLSTM, the current status of the computation has to be named by 2D indices
(j, i). At each position (j, i), we provide both the source representation hj and
the previous target word ei−1 as the input to the 2DLSTM. This can be done by
concatenating them. Our hypothesis is that after processing the whole source and
the target history, ie. at position (J, i − 1), the 2DLSTM is able to provide the
context vector ci that will be used to predict the next target word.

The whole setup of 2DLSTM is shown in Figure 5.2. Formally, it is defined as

aj,i = 2DLSTM([hT
j ; e

T
i−1]

T ,aj−1,i,aj,i−1) (5.13)

ci = aJ,i (5.14)

43

Chapter 5 Extensions of the Attention Mechanism

For a naive implementation, there would be one major problem. At each time
step i, the 2DLSTM should iterate over all previously generated target words ei−1

1 .
Since at i = 1 no target history is available yet, the second dimension has a length
of 0. This would make it impossible to iterate over the source sentence for the first
time and no context vector c1 could be computed. Therefore, the network would
be prevented from starting the translation.

We solve this problem by adding an additional <BOS> token, that represents the
sentence-start, to the beginning of the target sentence. This was only done during
the computation of the 2DLSTM and did not influence the encoder or decoder of
the network. Because, in the context of the 2DLSTM, every target sentence starts
with the special token <BOS>, the aforementioned problem is solved. At i = 1,
the sentence-start token is already given, thus the second dimension is of length 1.
Theoretically, the <BOS> token could be removed once the first target word has
been hypothesized. However, this could increase the complexity, since the network
would then have to differentiate between <BOS> and a real hypothesized target
word as the first input. We therefore append the <BOS> token at every decoding
step for the 2DLSTM attention setup.

As an alternative to appending the target word ei−1 to the input, one could use
the decoder state si−1 as well. However, the decoder states are not known before the
training process starts. Appending the decoder states to the input would therefore
prevent the optimization described in the following section.

5.3.1 Difference between Training and Decoding

As explained above, at each time step i, the 2DLSTM has to iterate over both the
whole sequence of source sentences, as well as all previously hypothesized target
words. Because the number of computations for J source and I target words is
O(J · I) for a single time step and O(J · I2) for all I time steps, optimizing this
process is quite important.

During the training process, all target words are already known beforehand. For
the computation of the 2DLSTM cells, the knowledge of the correct target words
can be used. Before starting the training process for any i, a single 2DLSTM can
iterate over both the complete source and target sentence. When the 2DLSTM
states are stored in memory, the need for further computations during the training
step is eliminated. Once, for a given time step i, the 2DLSTM states are needed,
they can be read from memory, yielding a time complexity of O(J · I) for all I time
steps. As shown by Voigtlaender et al. [2016], all states of a 2DLSTM located in
one diagonal can be computed in parallel (see Section 3.3.2). Therefore, the time
complexity can be reduced to O(J + I).

Unfortunately, this is not possible during decoding. Because the target sentence
is not known in advance, only those target words can be used for the 2DLSTM that

44

5.3 Two-Dimensional (2D) Attention

ei+1 si+1

ei si

ci+1

ei−1 si−1

aj−1,i aj,i ci

aj,i−1 ci−1

h... hj−1 hj hj+1

f... fj−1 fj fj+1

Figure 5.2: The setup of a 2DLSTM attention model. The encoder and decoder
are marked yellow. At time step (j, i), the 2DLSTM receives the states
from the time steps (j− 1, i) and (j, i− 1), as well as the concatenation
of hj and ei−1. The final 2DLSTM state at (J, i) is used as the context
vector ci. The flow of information at time step (j, i) is highlighted in
red.

have already been hypothesized. However, an optimal implementation could still
leverage the fact that for a target sequence ei1, the history ei−1

1 has already been
processed in the past. To extend the 2DLSTM to the new target word, only one
additional row has to be computed, as shown in Figure 5.3. The cell states aj,i−1

that this row depends upon can be read from the memory of the decoding time
step i− 1.
This was not possible with the implementation in the RWTH extensible training

framework for universal recurrent neural networks (RETURNN) [Doetsch et al.,
2016, Voigtlaender et al., 2016] which we use. We were therefore forced to recompute
the 2DLSTM from scratch at every decoding time step, resulting in O(I · (I + J))
computations for the 2DLSTM per translated sentence.

45

Chapter 5 Extensions of the Attention Mechanism

ei−1

. . .

· · · aj−1,i aj,i aj+1,i · · ·

.

f... fj−1 fj fj+1 f...

t = i

ei

· · · aj−1,i+1 aj,i+1 aj+1,i+1 · · ·

. . . aj−1,i aj,i aj+1,i . . .

f... fj−1 fj fj+1 f...

t = i + 1

Figure 5.3: Reusing the 2DLSTM during decoding. By storing the top row of
the 2DLSTM in memory, one does not have to recompute the whole
2DLSTM during the next timestep.

46

5.3 Two-Dimensional (2D) Attention

5.3.2 Optimization of the Backward Pass

To make the training fast, it is important to reduce the number of necessary compu-
tations as much as possible. Especially matrix-vector multiplications and sigmoid
functions can become very time consuming for large setups.

In the formulas of the gradient of the 2DLSTM described in Appendix A.1.3,
one can observe that the gate values during the forward pass can be reused. This
can be leveraged eg. in Equation A.33, where being able to access the output
gate value ot,t′ that was calculated during the forward pass eliminates the need to
recompute σ(Mo[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T). In the implementation in RETURNN
by Voigtlaender et al. [2016], only the gate values it,t′ , ft,t′ , λt,t′ and ot,t′ , as
well as the LSTM state ct,t′ are saved. The input candidate c̃t,t′ that is needed
in Equations A.38 and A.40 and the value of tanh(ct,t′), used in Equations A.31
and A.32, are not stored. Instead, they are recomputed based on the available
information. Using Equation 3.32 for ot,t′ ∈ R

n

ht,t′ = ot,t′ ◦ tanh(ct,t′) (5.15)

Voigtlaender et al. [2016] define

(tanh(ct,t′))k =

{
(ht,t′)k/(ot,t′)k , if (ot,t′)k 6= 0

0 , otherwise
∀k ∈ {1, . . . , n} (5.16)

This avoids the expensive computation of tanh(ct,t′) based on ct,t′ . Similarly, using
Equation 3.30 for ct,t′ ∈ R

n

ct,t′ = ft,t′ ◦ (λt,t′ ◦ ct−1,t′ + (1− λt,t′) ◦ ct,t′−1) + it,t′ ◦ c̃t,t′ (5.17)

they define

(c̃t,t′)k =

(ct,t′)k − (ft,t′)k

(
(λt,t′)k(ct−1,t′)k

+(1− (λt,t′)k)(ct,t′−1)k

)
/(it,t′)k , if (it,t′)k 6= 0

0 , otherwise

(5.18)

∀k ∈ {1, . . . , n}

We have noticed that due to the numerical instability of floating point opera-
tions, this causes the values of tanh(ct,t′) and c̃t,t′ during the backpropagation to
be slightly different from the forward pass. However, based on the fact that the
absolute error between both values is less than 10−9, it does not significantly in-
fluence the training process. We therefore run our experiments using the original
implementation.

47

Chapter 5 Extensions of the Attention Mechanism

5.4 2D Sequence to Sequence (2D seq2seq) Model

In the previous sections, we have explained two possibilities to improve the currently
used encoder-attention-decoder setup by replacing the attention mechanism. In this
section, we propose a different architecture that does not have an LSTM encoder
and decoder.

In the new architecture, a 2DLSTM, as it is used for the 2D attention in Sec-
tion 5.3, processes all source words and the target history. We have come up with
an idea where we omit all other parts of the network, and use only a single 2DLSTM
to generate the hypotheses. The 2DLSTM can be interpreted to provide a 2D map-
ping of the source and target words to a shared space. The resulting network has
the following structure:

1. An embedding matrix transforms each one-hot vector into a shared vector
space

2. The 2DLSTM iterates over all source embeddings and all target history em-
beddings

3. The last horizontal 2DLSTM state aJ,i is transformed using a second embed-
ding matrix

4. The obtained vector is normalized using a softmax layer and used as the
probability distribution over the target words

This setup is described by the equations as follows:

aj,i = 2DLSTM([fT
j ; e

T
i−1]

T ,aj−1,i,aj,i−1) (5.19)

ei = softmax(aJ,i) (5.20)

The 2D seq2seq architecture can be seen in Figure 5.4.

5.4.1 2D Encoder

Since the network reads the source sentence from left to right, it has an obvious
drawback compared to models with a bidirectional encoder where the entire context
is encoded in each position j. We not only try to add such an encoder to the network
(still without using any special attention or decoder structure), but also attempt
to replace the encoder by another 2D network.

To achieve this, we use the sequence of source words for the first dimension and
the inverted source sequence for the second dimension. After finishing the 2DLSTM
computation, we use the elements hj,j as our source representations hj . In other
words, we take the major diagonal of the encoder matrix as the sequence of source

48

5.4 2D Sequence to Sequence (2D seq2seq) Model

ei+1

ei

ei−1

aj−1,i aj,i

aj,i−1

f... fj−1 fj fj+1

Figure 5.4: A 2D seq2seq architecture. The source sentence is embedded and dir-
ectly fed to the 2DLSTM. Its final states aJ,i are used to predict the
next target word. There is no explicit decoder state, the 2DLSTM keeps
track of the target history internally. The flow of information at time
step (j, i) is highlighted in red.

representations. As can be seen in Figure 5.5, for the elements at this diagonal, the
network has seen the complete source sentence with focus on the individual word
fj .

5.4.2 Weighting Mechanism

In addition to the 2D encoder, we experiment with applying a weighting mechanism
before predicting the next target word. It uses the 2DLSTM state aJ,i to weight

49

Chapter 5 Extensions of the Attention Mechanism

f1

h1,1

fj

hj,j

fJ

hJ,J

f1 fj fJ

Figure 5.5: A 2D encoder. The marked states in the diagonal are used as the
encodings hj . At those points, the network has seen the complete source
sentence, the word at position j being the last one.

all states a1,i, . . . ,aJ,i. This is done analogue to the weighting mechanism in the
attention layer described in [Bahdanau et al., 2014].

aj,i = 2DLSTM([fT
j ; e

T
i−1]

T ,aj−1,i,aj,i−1) (5.21)

ẽj,i = vT tanh ([aT
J,j ;a

T
j,i]

T) (5.22)

αj,i =
exp(ẽj,i)∑J

j′=1 exp(ẽj′,i)
(5.23)

ti =

J∑

j=1

αj,iaj,i (5.24)

ei = softmax(ti) (5.25)

where vT is a weight vector.

50

Chapter 6

Experiments

To test the performance of our proposed modifications, we have performed a number
of experiments. They were designed to show the influence of different variations
of similar setups and to allow a judgment of which modifications are the most
promising ones.

6.1 Preprocessing

In theory, a sufficiently complex artificial neural network (ANN) should be able
to process any input in any format, as long as it is consistent. However, certain
modifications to the input can simplify the data processing, thus reducing the need
for complexity and making the network easier to train. This section presents three
commonly used techniques that can be applied offline, ie. as a preprocessing step
before the training.

6.1.1 Tokenization

Usually, the natural separation of words by spaces is used to split the input string
into symbols, potentially followed by further splitting (see Section 6.1.2). However,
simple space based splitting will cause problems due to punctuations: eg. question
marks at the end of the sentence or commas in between would lead to unnecessarily
duplicated vocabulary entries like “speak” and “speak?” if “speak” appears once
in the middle of a sentence and once at the end of a question.

To avoid this issue, additional spacing is introduced in front of all punctuation,
thus separating them from any connected word. The punctuation signs can then
be processed like regular words.

6.1.2 Subword Units

The input to the neural network is a one-hot vector indicating the word of the
source vocabulary and the output is a probability distribution over all words in the
target vocabulary. This restricts the network to operate on a fixed set of words.
Hence, all out of vocabulary (OOV) words are mapped to a special token (UNK).

51

Chapter 6 Experiments

Unfortunately, multiple problems arise if the source vocabulary has to be fixed to
a specific size: firstly, there is no fixed list of possible named entities, so the test set is
likely to contain some unknown words. Secondly, inflections can create many small
variations of the same word, further inflating the size of a potential vocabulary.
And thirdly: some languages like German use compounds like “Türklinke” (“door
handle”) that consist of individual words such as “Tür” (“door”) and “Klinke”
(“handle”). By using this technique, infinitely many new words can be created.
It is clear that no network can be able to recognize and generate all these words.
There are multiple possible solutions to this problem.

1. Copy all unknown input words verbatim to the target sentence. This can
solve problems with named entities, as they can usually be copied from the
source. But for unknown words other than named entities, it will copy them
as well, leading to a translation that is full of words in the source language.

2. Use an additional dictionary for unknown words. Because it may contain
words which are not known to the neural network (NN), this will reduce the
rate of untranslatable words. However, it will not catch all of them.

3. Split unknown words into smaller, known parts. This technique is currently
used most often.

Sennrich et al. [2015] have been the first to apply the byte pair encoding (BPE)
compression algorithm, as described in [Gage, 1994], to source and target sequences
in order to allow the NN to work with unknown source and target words. It splits
unknown words in smaller, known chunks, thus enabling the network to improvise
eg. compounds like “Türklinke” by concatenating the two known words “Tür” and
“Klinke”. Names on the other hand might be split on character level and copied
one by one to the target sentence, i.e. the network is still capable of copying text.

The algorithm splits all words in the corpus on character level. The characters
are treated as symbols. Then, at each iteration, the two symbols that occur con-
secutively the most often are merged and treated as one single new symbol during
the next iterations. The information that these two symbols were merged is appen-
ded to a list that saves all merging operations. A predefined number of merging
operations is the stop criterion.

Before unseen sentences are used in the decoding phase, all words in this test
corpus are split on character level as well. Then, the previously generated list of
merging operations is applied in the same order the operations have been saved.
This generates a corpus that only consists of (sub-) words that are part of the
network’s vocabulary.

An example of this process can be seen in Table 6.1. Sennrich et al. [2015] note
that completely unknown characters in the test set will still lead to OOV words.

52

6.2 Setup

Table 6.1: Example of the BPE algorithm. The compound word “airplane” is split
into “air·p·l·an·e”, potentially simplifying its translation because “air” is
identified to be part of it.

corpus symbols merged

a·n a·i·r·p·l·a·n·e i·n t·h·e a·i·r a·n → an
an a·i·r·p·l·an·e i·n t·h·e a·i·r a·i → ai
an ai·r·p·l·an·e i·n t·h·e ai·r ai ·r → air
an air·p·l·an·e i·n t·h·e air

6.1.3 Category Replacement

Besides usual words, text may also contain symbols from special categories, such as
numbers or URLs. Both should usually be copied verbatim. While numbers could
be split to individual digits by means of BPE and only increase the sentence length,
URLs pose a bigger problem.

During the tokenization, an URL like “https://example.com/about-us” would be
transformed to “https : / / example . com / about - us”. A network trained for
English to German translation would most likely generate “https : / / beispiel .
com / über - uns”, thus an unrelated URL. To avoid this problem, numbers as well
as URLs can be replaced by a special placeholder in a preprocessing step. After
the network has generated the hypothesis, this placeholder can then be replaced by
the original URL or number. If there are more than one number or URL existing
in the source and target sentence, the attention weights computed by the network
(see Section 4.2) can be used to identify which target placeholder is aligned to
which source word. Although category replacement is beneficial in statistical ma-
chine translation (SMT), we have observed that URLs occur seldom enough not
to be important and that BPE is capable of splitting numbers to frequent n-gram
sequences. Therefore, we do not use category replacement in our experiments.

6.2 Setup

In this section, we define the general setup of our experiments. Because many of the
experiments take a long time to train, it has not been possible to redo them, once
better hyperparameters such as the learning rate or model size have been found.
Therefore, specific details are not necessarily the same across all experiments. These
are individually highlighted. However, we attempt to make each comparison as fair
as possible.

We train the models on two different corpora:

53

Chapter 6 Experiments

1. The workshop on machine translation (WMT) corpus (see Appendix A.3.1) is
used for both German→English and English→German translation. It consists
of the corpora Europarl-v7, News-Commentary-v10 and Common-Crawl1.
newstest2015 is our development set, newstest2016 and newstest2017 are our
test sets.

2. The international workshop on spoken language translation (IWSLT) indo-
main technology, entertainment, design (TED) talks training corpus (see Ap-
pendix A.3.2) is used to translate German→English.

We apply true-casing and BPE (see Section 6.1.2) with 20k merge operations. All
of our experiments have the following setup:

1. Unless otherwise noted, the embedding matrices have the size of the encoder
and decoder respectively.

2. During the training, each batch consists of 50 sentences, each no longer than
50 subword units.

3. The decoder long short-term memory (LSTM) is initialized with the last state
of the bidirectional encoder LSTM.

4. The parameters are initialized using a xavier distribution (see Section 3.4.2).

5. As the optimization technique, the Adam optimizer (see Section 3.4.2) is used.

6. For the encoder-decoder architecture with the usual attention mechanism, as
well as one-dimensional (1D) LSTM attention, the LSTM cells have additional
peephole connections. For the two-dimensional LSTM (2DLSTM), these were
omitted.

7. For decoding (see Section 2.2), we use a beam size of 12.

As our baseline, we use an encoder-decoder architecture with attention (see Sec-
tion 4.2). It consists of a bidirectional encoder, an additive attention mechanism
and a unidirectional decoder. The attention layer consists of a tanh nonlinearity
followed by a softmax function. In the decoder, a maxout and a softmax layer
are applied to determine the next prediction. The encoder and decoder recurrent
neural networks (RNNs) are LSTMs. The sizes of the encoder, attention layer
and decoder vary, they are specified for each experiment. Generally, the attention
layer computes the weights based on source representations with the size of the
encoder. However, it applies these weights to the representations with twice the

1For some German→English experiments, we add the newstest sets form 2008-2014 four times to
the training corpus

54

6.3 Recalculating the Encoding

Table 6.2: Evaluation of recomputing the encoding. Trained on WMT 2017 Ger-
man→English, with an encoder/attention/decoder size of 500.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

Baseline 26.4 31.2 27.1 53.6 48.9 53.3 12.5 7.8 40.6M

Recomputing Enc. 28.1 33.1 28.7 52.5 47.9 52.5 10.4 6.6 52.9M
+ pretrained 28.4 33.6 29.1 52.5 47.4 52.1 10.5 6.7 52.9M

size of the (bidirectional) encoder. The baseline is trained with a learning rate of
10−3. For WMT 2017 German→English with a size of 500, it is trained with the
appended newstest sets 2008-2014. For the larger setup and experiments on WMT
2017 English→German, these sets are not included in the training corpus.

For all setups, we measure the number of processed tokens during the training
and decoding. Although we report the timings of all experiments on the same type
of GPU (a GeForce GTX 1080 Ti), they depend on external factors like parallel
running jobs as well. Nevertheless, they do provide some insight into the perform-
ance differences of the various setups. We report Bleu, Ter and perplexity (Ppl)
scores of an averaged model. It is created by averaging the parameters of the best
4 snapshots of a single training run (see Section 3.5), selected based on Bleu score
on the development set. The Ppl is computed on the development set, Bleu and
Ter on the development and both test sets.

For some experiments, we train a baseline model until convergence and then
switch to alternate setups, ie. the parts of the network that are identical are already
trained. We mark these setups as pretrained.

6.3 Recalculating the Encoding

In the baseline system, the source sentence is encoded once at the beginning and
kept unchanged while generating the target sequence. We evaluate whether it is
beneficial to recalculate the encoder states at every decoder time step (see Sec-
tion 5.1). This modification yields significant improvements (see Table 6.2). The
average Bleu score of the pretrained model increases by 2.1 percent points (pps),
the average Ter score decreases by 1.3 pp. However, the number of processed
source tokens per second both during training and decoding drops by a factor of 8
and 3, respectively (see Table 6.3). Because the required number of iterations until
convergence does not decrease, the resulting increase in training time is prohibit-
ively large, preventing further experiments.

55

Chapter 6 Experiments

Table 6.3: Trainind and decoding speed of recomputing the encoding, measured on
WMT 2017 German→English. The size of the encoder/attention/de-
coder layer is 500.

Training Decoding Convergence
[tokens/s] [tokens/s] [iterations]

Baseline 4,870 56 750k
Recomputing Enc. 603 17 800k

6.4 One-Dimensional (1D) Attention

First, we evaluate the general performance of a 1D attention model. In addition, we
compare models using gated recurrent units (GRUs) and LSTMs (see Table 6.4).

It is apparent that GRU and LSTM have the same performance. On average, they
have the same Bleu and Ter scores. Both setups show a noticeable improvement
of 0.9 pp Bleu and 1.0 pp Ter on average over the baseline model. The training
of a network with an RNN attention layer is slower than the baseline by a factor of
4, the decoding takes about twice the time (see Table 6.5).
Next, we examine whether initializing the parameters with the decoder state or

appending the decoder state to the input yields better results. We try this both
for LSTMs and GRUs (see Table 6.4). For LSTM, initializing it with the decoder
state outperforms the LSTM attention layer where the decoder state is appended
by 0.3 pp Bleu and 0.4 pp Ter on average. However, for the GRU attention layer,
both techniques yield the same results. The average Bleu score for initializing the
GRU is 0.1 pp above the score for appending it, the average Ter score of both
setups is the same. This difference may be explained by the additional memory cell
of the LSTM. Because it increases the amount of information that can be stored,
the LSTM does not forget part of the decoder state as soon as the GRU. There,
appending it to the input can counter the negative effect of the missing memory
cell. We expect the benefit of appending the decoder state to become larger for
longer sequences.

Finally, we evaluate whether it is best to take the last RNN state or a weighted
average (see Section 5.2.1). The results (see Table 6.6) indicate that a weighting
mechanism is slightly beneficial overall. This is in contrast to the findings by Zhang
et al. [2016]. We assume that this is due to the higher flexibility of our weighting
technique. Instead of a simple arithmetic mean, we compute a weighted sum, thus
providing the network with more freedom.

56

6.5 Two-Dimensional (2D) Attention

Table 6.4: Comparison of GRUs and LSTMs as the attention layer and two ways to
pass the decoder state. Trained on WMT 2017 German→English, with
an encoder/decoder size of 500. The attention layer of the baseline and
the RNNs used in the attention layers have size 1,000. The decoder state
is either used to initialize the RNN or appended to its input.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

Baseline 26.9 32.8 27.8 53.6 48.8 52.8 11.7 7.3 41.6M

LSTM (initialized) 28.5 33.4 29.0 52.2 47.3 52.3 10.1 6.5 48.6M
+ pretrained 28.3 32.9 29.0 52.6 47.7 52.3 10.2 6.5 48.6M

LSTM (appended) 28.4 32.8 28.4 52.8 48.3 53.0 10.5 6.6 49.6M
+ pretrained 28.3 33.1 28.6 52.3 47.8 52.4 10.0 6.4 49.6M

GRU (initialized) 28.2 33.1 29.0 52.7 47.7 52.4 10.2 6.5 46.1M
+ pretrained 28.6 33.2 28.7 52.5 47.8 52.4 10.4 6.6 46.1M

GRU (append) 28.4 33.2 28.6 52.4 47.7 52.6 10.3 6.5 47.1M
+ pretrained 28.2 32.9 29.0 52.7 48.0 52.3 10.4 6.6 47.1M

Table 6.5: Trainind and decoding speed of a model with a 1D LSTM attention layer,
measured on WMT 2017 German→English. The size of the encoder/at-
tention/decoder layer is 1,000.

Training Decoding Convergence
[tokens/s] [tokens/s] [iterations]

Baseline 2,796 67 750k
LSTM 680 31 1.000k

6.5 Two-Dimensional (2D) Attention

In the following sections, we will present our results for the setups with a 2DLSTM
as the attention mechanism. Here, all models have a bidirectional encoder and a
decoder as described in [Bahdanau et al., 2014].

6.5.1 General Performance

The 2DLSTM attention is an extension of the 1D approach. We therefore compare
the performance of both setups (see Tables 6.7 and 6.8).

57

Chapter 6 Experiments

Table 6.6: Comparison of different possibilities to compute the context vector.
Trained on IWSLT 2010 German→English with an encoder/decoder size
of 500. The baseline has an attention layer of size 500, the RNN used
in the attention layer has size 1,000. The GRU in the attention layer is
initialized with the decoder state.

Bleu [%] Ter [%] Ppl # params
2010 2010 Words BPE

Baseline 27.1 51.7 22.6 16.5 27.1M

GRU last 27.6 50.7 20.8 15.3 32.6M
GRU weighted 27.3 50.1 19.8 14.6 33.1M

Table 6.7: Comparison of 1D and 2DLSTM as the attention machanism. Trained on
WMT 2017 German→English, with an encoder/attention/decoder size
of 1,000. The embedding size is 620. The 1D and 2DLSTM used in the
attention layer do not have peephole connections. For the 1D attention
layer, the decoder state is appended to the input.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

Baseline 28.3 33.4 28.9 52.9 46.9 51.5 9.5 6.2 78.3M
1D-LSTM 28.6 33.2 28.9 52.3 47.8 52.5 9.5 6.2 92.3M
2D-LSTM 28.1 33.0 28.7 52.5 47.7 52.3 9.3 6.1 119.6M

Table 6.8: Comparison of 1D and 2DLSTM as the attention machanism. Trained on
WMT 2017 English→German, with an encoder/attention/decoder size
of 1,000. The embedding size is 620. The 1D and 2DLSTM used in the
attention layer do not have peephole connections. For the 1D attention
layer, the decoder state is appended to the input.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

Baseline 25.0 28.6 23.4 57.1 52.4 59.1 11.7 5.8 78.3M
1D-LSTM 24.6 27.5 22.8 58.6 54.4 60.3 12.1 6.0 92.3M
2D-LSTM 24.5 28.3 22.7 58.2 53.0 60.0 11.1 5.6 119.6M

58

6.5 Two-Dimensional (2D) Attention

Table 6.9: Trainind and decoding speed of a model with a 2DLSTM attention layer,
measured on WMT 2017 German→English. The size of the encoder/at-
tention/decoder layer is 1,000.

Training Decoding Convergence
[tokens/s] [tokens/s] [iterations]

Baseline 2,796 67 750k
2DLSTM 799 0.8 820k

Table 6.10: Analysis of the influence of an additional weighting layer on top of a
2DLSTM attention layer. Trained on WMT 2017 German→English,
with an encoder/attention/decoder size of 500.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

Baseline 26.4 31.2 27.1 53.6 48.9 53.3 12.5 7.8 40.6M

2DLSTM 27.3 32.2 27.9 53.3 48.4 53.2 11.1 6.9 57.0M
+ pretrained 28.0 32.8 28.2 52.2 47.9 52.5 10.1 6.4 57.0M

2DLSTM weighted 27.8 32.5 28.1 52.4 47.5 52.4 10.5 6.6 57.3M
+ pretrained 27.4 32.4 28.0 53.0 48.0 52.6 11.1 7.0 57.3M

On average, a 1D LSTM attention model outperforms a model with a 2DLSTM
attention layer by 0.1 pp Bleu. However, the average Ter score of the 2D attention
model is better by 0.4 pp. Additionally, because the computation of the 2DLSTM
can be performed once at the beginning (see Section 5.3.1) and is highly optimized,
the training process is much faster. It takes about 3 times as long as the baseline
(see Table 6.9). The decoding is much slower, because there the 2DLSTM has to be
recomputed at every time step, as described in Section 5.3.1. Of the 119.6 million
parameters, 24 million are used for the lookup table needed to embed the target
one-hot vectors before they are appended to the 2DLSTM input. By reusing the
matrix used in the decoder, these could be removed.

As for 1D attention, we compare whether it is beneficial to use the last state
aJ,i as the context vector or to compute a weighted sum. The experiment veri-
fies our finding for 1D attention that a weighted sum yields slightly better results
(see Table 6.10). Although the best Bleu scores are reached by taking the last
state, the average Bleu across all three test sets and both the pretrained and ran-
domly initialized model is the same as for the architecture where a weighted sum

59

Chapter 6 Experiments

Table 6.11: Evaluation of the influence of the initialization on 2DLSTM. Trained on
WMT 2017 German→English. The baseline system has an encoder/at-
tention/decoder size of 1,000 and an embedding size of 620. The other
models have an encoder/decoder and embedding size of 500, the 1D
LSTM and 2DLSTM have size 1,000. The pretrained 2DLSTM models
are initialized using a converged 1D LSTM attention model. The train-
ing corpus of the 1D LSTM and 2DLSTM models contain the newstest
sets 2008-2014.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

Baseline 28.3 33.4 28.9 52.9 46.9 51.5 9.5 6.2 78.3M

1DLSTM, lr=10−4 28.5 33.4 29.0 52.2 47.3 52.3 10.1 6.5 48.6M

2DLSTM, lr=10−4 28.2 32.5 28.6 52.7 48.2 52.8 9.9 6.3 70.5M
+ pretrained 28.5 33.5 29.0 52.4 47.4 51.9 9.5 6.1 70.5M

2DLSTM, lr=5 · 10−4 29.0 33.7 29.5 51.6 47.0 51.5 9.9 6.3 70.5M
+ pretrained 29.1 34.4 30.0 51.5 46.4 50.7 9.5 6.1 70.5M

is computed. For Ter, the weighting algorithm improves the score by 0.3 pp on
average.

Finally, we analyze how the initialization influences the 2DLSTM (see Table 6.11).
To this end, we train a 1D LSTM model until convergence and use it to initialize
the weights of the 2DLSTM model. The difference to the other experiments where
pretrained models are used, is that here, the first dimension of the 2DLSTM is
initialized with the trained 1D LSTM weights. The only untrained parameters
are therefore those that control the flow of information in the second dimension.
During the training, all parameters are updated. In addition to the learning rate
of 10−4, we experiment with a learning rate of 5 · 10−4 as well. Interestingly,
the model with the larger learning rate is better than the model with the lower
learning rate by 0.9 pp Bleu and 1.1 pp Ter on average. Both pretrained models
outperform both the baseline system and the randomly initialized 2DLSTM model.
The results indicate that the initialization of the 2DLSTM has a large influence on
the final performance of the models. The following section shows that for a random
initialization, the 2DLSTM is very sensitive to the choice of learning rate.

60

6.5 Two-Dimensional (2D) Attention

6.5.2 Learning Rate

For randomly initialized 2DLSTMs, we evaluate the influence of the learning rate.
It becomes apparent that 2D attention is very sensitive to the size of the weight
update steps.

In Figure 6.1, one can see both the cost on the training set as well as the perplexity
on the development set during the course of a training with a learning rate of 10−3.
As depicted there, both start to increase again after a given number of training
iterations. This behavior is relatively uncommon for the training of NNs. Usually,
over time, the networks tend to overfit on the training corpus, ie. they simply
memorize the correct translations and lose their ability to generalize to unseen
sentences. This leads to a steadily decreasing cost on the training set and an
increase of the perplexity on the development set. The fact that even the cost
on the training set increases is an indicator of a problem during training. If the
function space is very uneven and has many dips and peeks, an update to the
parameter values that is too large might cause the network to jump over a local
optimum. Even though training procedures such as Adam try to avoid this problem
(see Section 3.4.2), an unfavorable function space may still cause the network to
climb up hills by constantly overshooting local optima. This situation is described
in more detail in Section 3.4.2 and the corresponding Figure 3.8.

The behavior depicted in Figure 6.1 has been recorded based on an initialization
using a gaussian normal distribution with a standard deviation of 10−2. However, a
xavier initialization (see Section 3.4.2) yields similar results. Additionally, training
a 2D attention layer with a learning rate of 10−4 for 570,000 iterations and only
then switching to the higher learning rate of 10−3 does not help either. As soon as
the learning rate is increased, the performance of the model decreases.

This indicates that the gradients with respect to the parameters within a 2D
attention layer are very noisy. We have verified this assessment by modifying the
batch size. While a 2D attention model with a learning rate of 5 · 10−4 trains
correctly with a batch size of 50, it fails to learn anything with a batch size of 25.
For the larger batch size, the noise of the gradients mostly cancels out because it
is averaged across 50 training samples. By reducing the batch size, the noise has
more influence and prohibits a successful training.

We therefore train our models using a learning rate of 10−4 and a batch size of 50,
as defined in Section 6.2. This avoids the aforementioned issues, but increases the
necessary number of training iterations until convergence and therefore the complete
training time. The positive effect of initializing the 2DLSTM with a trained 1D
LSTM attention model described in the previous section was only discovered at the
end of the thesis, so it could not be used in the other experiments.

61

Chapter 6 Experiments

0 20 40 60 80 100 120 140 160 180 200

60

80

100

120

1,000 training iterations

C
os
t
on

th
e
tr
ai
n
in
g
se
t

size 1000

size 1000 (pretrained)
size 500

size 500 (pretrained)

(a) Cost on the training set

0 20 40 60 80 100 120 140 160 180 200

40

60

80

100

120

140

160

1,000 training iterations

P
er
p
le
x
it
y
on

th
e
d
ev
el
op

m
en
t
se
t

size 1000 (pretrained)
size 500

size 500 (pretrained)

(b) Perplexity on the development set. The Ppl of the randomly
initialized model with size 1,000 never drops below 210.

Figure 6.1: Training a 2DLSTM with learning rate 10−3 leads to an increasing train-
ing cost and perplexity. We experimented both with 2DLSTM cells of
size 500 and 1,000. Trained and evaluated based on corpus WMT 2017
English→German.

62

6.5 Two-Dimensional (2D) Attention

Table 6.12: Comparison of 2DLSTM sizes. Trained on WMT 2017 Eng-
lish→German, with an encoder/decoder size of 1,000. The baseline
has an attention layer of size 1,000, the size of the 2DLSTM is specified
individually.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

Baseline 25.0 28.6 23.4 57.1 52.4 59.1 11.7 5.8 78.3M

2DLSTM size 1,000 24.5 28.3 22.7 58.2 53.0 60.1 11.1 5.6 119.6M
2DLSTM size 500 23.9 27.1 22.1 58.6 54.2 60.7 12.9 6.3 105.8M

Table 6.13: Trainind and decoding speed of a model with a 2DLSTM attention
layer 500, measured on WMT 2017 English→German. The size of the
encoder/decoder layer is 1,000. The first two experiments have an at-
tention layer of size 1,000. In the third experiment, it is reduced to size
500.

Training Decoding Convergence
[tokens/s] [tokens/s] [iterations]

Baseline 2,987 64 600k
2DLSTM 788 0.8 870k
2DLSTM size 500 1,243 2.4 1.200k

6.5.3 Model Size

We want to analyze whether the 2DLSTM attention mechanism is used to its full
potential. To this end, we perform an experiment with a reduced 2DLSTM size.
The drop in Bleu and increase in Ter is 0.8 pp and 0.7 pp, respectively. This is an
indicator that the 2DLSTM is in fact using all or most of the available parameters.
It should be noted, that even the smaller 2DLSTM attention model outperforms
the baseline system. By reducing the 2DLSTM size, the training speed is increased
to half the speed of the baseline. However, the required number of iterations until
convergence increases. The decoding speed is increased as well, even though it is
still slowed down by the repeated recalculation of the 2DLSTM (see Table 6.13).

63

Chapter 6 Experiments

Table 6.14: Evaluation of the performance of a 2D seq2seq model. Trained on WMT
2017 German→English. The two baseline systems have an encoder/at-
tention/decoder layer with size 500 and 1,000. The size of the 2D
seq2seq model is specified individually. The experiment marked with
weighted has an additional 2D encoder and a weighting mechanism on
top of the 2DLSTM.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

Baseline size 500 26.4 31.2 27.1 53.6 48.9 53.3 12.5 7.8 40.6M
2D seq2seq size 500 25.9 29.4 26.0 55.5 51.4 55.7 12.3 7.7 41.2M

+ weighted 26.9 31.3 26.3 54.0 49.2 56.6 11.2 7.1 46.4M

Baseline size 1,0002 28.3 33.4 28.9 52.9 46.9 51.5 9.5 6.2 78.3M
2D seq2seq size 1,000 27.1 31.4 27.4 53.9 49.4 54.3 10.3 6.6 91.8M

Table 6.15: Trainind and decoding speed of a 2D seq2seq model, measured on WMT
2017 German→English. The size of the encoder/attention/decoder
layer in the baseline system is 1,000. The 2DLSTM has size 1,000
as well

Training Decoding Convergence
[tokens/s] [tokens/s] [iterations]

Baseline 2,796 67 750k
2D seq2seq 1,023 0.8 1.200k

6.6 Two-Dimensional Sequence to Sequence (2D seq2seq)

The previous modifications only replace the encoding or attention layer. In this
section, we will examine the performance of the 2D seq2seq model that only consists
of a single 2DLSTM (see Section 5.4).
We first compare the baseline model with two 2D seq2seq setups that have either

500 or 1,000 nodes in the 2DLSTM layer (see Table 6.14). Both 2D seq2seq models
are outperformed by the corresponding baselines by 1.1 and 1.6 pp Bleu, and 2.3
and 2.1 pp Ter, respectively. Nevertheless, the performance proves that, as we hy-
pothesized, the 2DLSTM is able of internalizing the encoder, attention mechanism
and decoder. Compared with the baseline, the average training time increases by
a factor of 3 (see Table 6.15). During the decoding, the optimization described in
Section 5.3.1 is not possible, resulting in the slow speed.

64

6.6 Two-Dimensional Sequence to Sequence (2D seq2seq)

Additionally, it should be noted that the 2D seq2seq network is at a significant
disadvantage. Because we remove the bidirectional encoder and the 2DLSTM is
unidirectional, the network has no knowledge of the words fJ

j+1 while processing
word fj .

We try to make the 2D seq2seq model as strong as possible by equipping it
with both a 2D encoder (see Section 5.4.1) and a weighting algorithm (see Sec-
tion 5.4.2). Using this modification, the small model with size 500 yields results
that are competitive compared to the baseline (see Table 6.14). The average Bleu
score of the baseline is better by 0.1 pp, the average Ter is better by 1.3 pp. In
the previous sections, we have shown that the improvement gained by a weighting
algorithm is relatively small for 1D and 2DLSTM attention. This indicates that the
improvement is caused by the additional 2D encoder. Because the source sentence
is inverted for one of the two dimensions, the used source representations encode
the whole source sentence with focus on the corresponding source words. This is
consistent with a preliminary experiment where we use a 1D bidirectional encoder
and no weighting algorithm. There, the average performance compared with a 2D
seq2seq model with no encoder improved by 1 pp on both Bleu and Ter.

The 2D seq2seq model internally stores the whole target history and can modify
the source representation based on the current decoding step. To evaluate whether
this helps the model to avoid over- and under-translations, we score the hypotheses
with respect to the source length. To make the scores more reliable, we concatenate
the three sets newstest2015, newstest2016 and newstest2017 for German→English
translation. We separate them based on the number of words in the source sentence
(1-10, 11-20, 21-30, 31-40, 41-50 and 51 or more words), yielding groups of 1455,
3081, 2133, 990, 344 and 169 sentences, respectively. As shown in Figure 6.2, the
performance of the baseline system drops for sequences longer than 50 words. This
can be explained with the length of the training sequences. Because only sequences
shorter than 50 subword units have been used, the model has never seen longer
sentences. However, both the simple 2D seq2seq model and the architecture with
an additional encoder and weighting algorithm do not suffer from long sequences.
This indicates that the model is able to store some form of fertility information
internally, helping it to avoid over- and under-translations.

Finally, we evaluate the performance of a bidirectional 2D seq2seq model (see
Table 6.16). On average, the Bleu score of both models is the same. The average
Ter score of the bidirectional 2D seq2seq model is better by 0.2 pp. That no
significant improvement is gained by adding the second direction agrees with the
results for 1D LSTM attention.

2This model has an encoder size of 620.

65

Chapter 6 Experiments

1-10
11-20

21-30
31-40

41-50
51+

24

26

28

30

32

Length of Source Sentence

B
L

E
U

[%
]

baseline
2D-seq2seq
weighted 2D-seq2seq

(a) Development of the Bleu score w.r.t. the
sequence length

1-10
11-20

21-30
31-40

41-50
51+

46

48

50

52

54

Length of Source Sentence
T

E
R

[%
]

baseline
2D-seq2seq
weighted 2D-seq2seq

(b) Development of the Ter score w.r.t. the
sequence length

Figure 6.2: Performance of the baseline and two 2D seq2seq models w.r.t the source
sequence length on the concatenation of the three sets newstest2015,
newstest2016 and newstest2017 for German→English translation.

Table 6.16: Comparison of a simple and an extended 2D seq2seq model. Trained
on WMT 2017 German→English, with an encoder/attention/decoder
size of 500.

Bleu [%] Ter [%] Ppl # params
2015 2016 2017 2015 2016 2017 Words BPE

2D seq2seq size 500 25.9 29.4 26.0 55.5 51.4 55.7 12.3 7.6 41.2M
+ bidirectional 25.6 29.6 26.0 55.5 51.1 55.4 12.5 7.6 44.9M

66

Chapter 7

Conclusion and Outlook

In this bachelor thesis, several new network topologies have been proposed and
tested. We now want to summarize our findings and propose further avenues of
work.

7.1 Conclusion

We have shown that the ability to recalculate the encoder states based on the de-
coder state yields significant improvements over a classical encoder-decoder archi-
tecture with attention. However, this modification increases the required training
time per iteration by a factor of 9. Therefore, this technique is not reasonably
usable in practice.

We have been able to verify that using one-dimensional (1D) recurrent neural
networks (RNNs) as the attention layer is beneficial, as stated by Zhang et al.
[2016]. However, using a weighting algorithm that can compute any weighted sum
yields further improvements, even though the authors report negative results for a
simple arithmetic mean. Because 1D attention is slow to train as well, the practical
application is limited.

We have shown that two-dimensional LSTM (2DLSTM) is a powerful tool. By
employing it in the attention layer, we are able to speed up the training, because
the whole 2DLSTM can be computed once and highly parallelized. In the direct
comparison, two-dimensional (2D) attention performs similar to an attention layer
with only one dimension. We have deduced that the gradients of 2DLSTM attention
models with respect to the parameters within the attention layer are very noisy.
This hinders the training, because it requires the learning rate to be low. Gaining a
speedup by reducing the 2DLSTM size is not advisable as it results in a significant
loss in translation quality.

Finally, we have proposed a 2D sequence to sequence (2D seq2seq) model as a
novel architecture. By unifying the encoder, attention layer and decoder within a
single 2DLSTM, we are able to reach a training speed of more than one third of
the baseline. The resulting model are outperformed by the baseline by about 1.3
percent point (pp) Bleu and 2.2 pp Ter on average. By adding an additional 2D

67

Chapter 7 Conclusion and Outlook

encoder and a weighting algorithm, the network becomes stronger, the Bleu score
of the weighted 2D seq2seq model is as good as the score of the baseline. For Ter,
the baseline still outperforms the improved model by 1.3 pp. These results are
especially noteworthy as the 2D seq2seq architecture has not yet been significantly
fine-tuned.

By evaluating the models for different source lengths, we have shown that the
proposed models do in fact reduce the risk of over- and under-translations. This
indicates that the network does learn the concept of fertility.

7.2 Outlook

For 1D RNNs as the attention mechanism, we find that initializing them with the
decoder state and appending it to their input yields comparable results. We expect
the performance of a solely initialized model to decrease as the sentence length
increases. We therefore propose to further evaluate how the information stored in
the decoder state can be best passed on to the attention RNN. Furthermore, we
would like to analyze why using a bidirectional RNN hinders the training process.

For 2DLSTM as the attention layer, we propose to investigate why the gradient
is as noisy as it is. Once a possibility to reduce this noise is found, the learning rate
could be increased, resulting in a faster convergence. This would allow it to further
fine-tune the hyperparameters such as the layer size or the specific setup of the
weighting algorithm. By experimenting with different initialization and training
schemes, it might be possible to further increase the performance of 2DLSTM,
making them a reasonable replacement for the usual attention method. To this
end, it may be necessary to speed up the computations of RNNs in general.

We find the experiments with only one or two 2DLSTM layers as the single ele-
ment of the network especially promising. The fact that the performance difference
between the 2D seq2seq model and the baseline was no more than 1.6 pp Bleu and
2.3 pp Ter, even though it has to internalize the encoder, attention layer and the
decoder, is quite fascinating. A more intense study of 2DLSTMs will probably re-
veal possibilities to further improve their performance. A specific aspect we would
like to highlight for further research is the option to add peephole connections to
the 2DLSTM.

68

Appendix A

Appendix

A.1 Derivations

To determine the direction of the weight updates, the gradient of the loss function
has to be computed with respect to every parameter. In the following sections we
first show a general derivation for matrix-vector products. Then, we provide the
derivations for long short-term memory (LSTM) and 2DLSTM. To simplify the
notation, we perform the derivations always based on scalars. In some cases, this,
as well as the time recurrence for LSTM and 2DLSTM, leads to multiple gradients
for the same scalar. These have to be added prior to following computations.

A.1.1 Matrix-Vector Products

We write Wm,n to denote the scalar in W in row m and column n. Similarly, xn

is the scalar in row n of x. Using

(Wx)m =
∑

n

Wm,nxn (A.1)

one can compute the gradients as follows:

∂(Wx)m
∂Wm,n

=
∂
∑

n′ Wm,n′xn′

∂Wm,n
(A.2)

=
∂(Wm,nxn)

∂Wm,n
(A.3)

= xn (A.4)

∂(Wx)m
∂xn

=
∂
∑

n′ Wm,n′xn′

∂xn
(A.5)

=
∂(Wm,nxn)

∂xn
(A.6)

= Wm,n (A.7)

69

Appendix A Appendix

A.1.2 Long Short-Term Memory (LSTM)

The formulas of an LSTM can easily be differentiated by using the chain rule. To
increase the readability, we use the simplified notation introduced at the end of
Section 3.3.1. Therefore, we have to differentiate the Equations 3.13 to 3.18:

ft = σ(Mf [x
T
t ,h

T
t−1, c

T
t−1]

T) (A.8)

it = σ(Mi[x
T
t ,h

T
t−1, c

T
t−1]

T) (A.9)

c̃t = tanh (Mc[x
T
t ,h

T
t−1]

T) (A.10)

ct = ft ◦ ct−1 + it ◦ c̃t (A.11)

ot = σ(Mo[x
T
t ,h

T
t−1, c

T
t]

T) (A.12)

ht = ot ◦ tanh (ct) (A.13)

We write xn to denote the scalar in vector x in row n. E is the value of the loss
function L. Once the derivation of the LSTM cell is needed, all layers that are
above it have already been differentiated. ∂E

∂htn
is therefore given. One can now

compute the derivations in reverse order. For Equation A.13:

∂E

∂otn

(A.14)

=
∂E

∂htn

· ∂htn

∂otn

Eq. A.13
=

∂E

∂htn

· ∂(otn · tanh (ctn))
∂otn

=
∂E

∂htn

· tanh (ctn)

∂E

∂ctn
(A.15)

=
∂E

∂htn

· ∂htn

∂ctn
Eq. A.13

=
∂E

∂htn

· ∂(otn · tanh (ctn))
∂ctn

=
∂E

∂htn

· otn · (1− tanh2 (ctn))

70

A.1 Derivations

For Equation A.12:

∂E

∂(Mo[xT
t ,h

T
t−1, c

T
t]

T)n
(A.16)

=
∂E

∂otn

· ∂otn

∂(Mo[xT
t ,h

T
t−1, c

T
t]

T)n

Eq. A.12
=

∂E

∂otn

· ∂σ
(
(Mo[x

T
t ,h

T
t−1, c

T
t]

T)n
)

∂(Mo[xT
t ,h

T
t−1, c

T
t]

T)n

=
∂E

∂otn

· σ
(
(Mo[x

T
t ,h

T
t−1, c

T
t]

T)n
)
·
[
1− σ

(
(Mo[x

T
t ,h

T
t−1, c

T
t]

T)n
)]

Eq. A.12
=

∂E

∂otn

· otn · (1− otn)

For Equation A.11:

∂E

∂ftn
(A.17)

=
∂E

∂ctn
· ∂ctn
∂ftn

Eq. A.11
=

∂E

∂ctn
· ∂(ftn · ct−1n + itn · c̃tn)

∂ftn

=
∂E

∂ctn
· ct−1n

∂E

∂ct−1n

(A.18)

=
∂E

∂ctn
· ∂ctn
∂ct−1n

Eq. A.11
=

∂E

∂ctn
· ∂(ftn · ct−1n + itn · c̃tn)

∂ct−1n

=
∂E

∂ctn
· ftn

∂E

∂itn
(A.19)

=
∂E

∂ctn
· ∂ctn
∂itn

Eq. A.11
=

∂E

∂ctn
· ∂(ftn · ct−1n + itn · c̃tn)

∂itn

=
∂E

∂ctn
· c̃tn

71

Appendix A Appendix

∂E

∂c̃tn
(A.20)

=
∂E

∂ctn
· ∂ctn
∂c̃tn

Eq. A.11
=

∂E

∂ctn
· ∂(ftn · ct−1n + itn · c̃tn)

∂c̃tn

=
∂E

∂ctn
· itn

For Equation A.10:

∂E

∂(Mc[xT
t ,h

T
t−1]

T)n
(A.21)

=
∂E

∂c̃tn
· ∂c̃tn
∂(Mc[xT

t ,h
T
t−1]

T)n

Eq. A.10
=

∂E

∂c̃tn
· ∂tanh

(
(Mc[x

T
t ,h

T
t−1]

T)n
)

∂(Mc[xT
t ,h

T
t−1]

T)n

=
∂E

∂c̃tn
·
[
1− tanh2

(
(Mc[x

T
t ,h

T
t−1]

T)n
)]

Eq. A.10
=

∂E

∂c̃tn
· (1− c̃t

2
n)

For Equation A.9:

∂E

∂
(
Mi[xT

t ,h
T
t−1, c

T
t−1]

T
)
n

(A.22)

=
∂E

∂itn
· ∂itn
∂
(
Mi[xT

t ,h
T
t−1, c

T
t−1]

T
)
n

Eq. A.9
=

∂E

∂itn
· ∂σ

(
(Mi[x

T
t ,h

T
t−1, c

T
t−1]

T)n
)

∂
(
Mi[xT

t ,h
T
t−1, c

T
t−1]

T
)
n

=
∂E

∂itn
· σ
(
(Mi[x

T
t ,h

T
t−1, c

T
t−1]

T)n
)
·
[
1− σ

(
(Mi[x

T
t ,h

T
t−1, c

T
t−1]

T)n
)]

Eq. A.9
=

∂E

∂itn
· itn · (1− itn)

72

A.1 Derivations

For Equation A.8:

∂E

∂
(
Mf [x

T
t ,h

T
t−1, c

T
t−1]

T
)
n

(A.23)

=
∂E

∂ftn
· ∂ftn
∂
(
Mf [x

T
t ,h

T
t−1, c

T
t−1]

T
)
n

Eq. A.8
=

∂E

∂ftn
· ∂σ

(
(Mf [x

T
t ,h

T
t−1, c

T
t−1]

T)n
)

∂
(
Mf [x

T
t ,h

T
t−1, c

T
t−1]

T
)
n

=
∂E

∂ftn
· σ(Mf [x

T
t ,h

T
t−1, c

T
t−1]

T)n ·
[
1− σ

(
(Mf [x

T
t ,h

T
t−1, c

T
t−1]

T)n
)]

Eq. A.8
=

∂E

∂ftn
· ftn · (1− ftn)

Afterwards, the derivation of the loss function with respect to the weight matrices
and xt, ht−1 and ct−1 can be determined as described in Appendix A.1.1. It should
be noted that the aforementioned addition of multiple gradients for the same scalar
applies to the gradient of ct as well. The gradient in Equation A.15 has to be added
to the one computed in Equation A.18 during the earlier backpropagation step.

A.1.3 Two-Dimensional LSTM (2DLSTM)

The derivation of the 2DLSTM is similar to the derivation of an LSTM cell with
only one dimension (see Appendix A.1.2). We again determine the derivations
based on the simplified notation defined at the end of Section 3.3.2. Therefore, we
have to differentiate the Equations 3.26 to 3.32:

ft,t′ = σ(Mf [x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T) (A.24)

it,t′ = σ(Mi[x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T) (A.25)

λt,t′ = σ(Mλ[x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T) (A.26)

c̃t,t′ = tanh (Mc[x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1]

T) (A.27)

ct,t′ = ft,t′ ◦ (λt,t′ ◦ ct−1,t′ + (1− λt,t′) ◦ ct,t′−1) + it,t′ ◦ c̃t,t′ (A.28)

ot,t′ = σ(Mo[x
T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T) (A.29)

ht,t′ = ot,t′ ◦ tanh (ct,t′) (A.30)

We write xn to denote the scalar in vector x in row n. E is the value of the loss
function L. Once the derivation of the LSTM is needed, all layers above it have
already been differentiated. ∂E

∂ht,t′n

is therefore given. One can now compute the

derivations in reverse order. For Equation A.30:

73

Appendix A Appendix

∂E

∂ot,t′n

(A.31)

=
∂E

∂ht,t′n

· ∂ht,t′n

∂ot,t′n

Eq. A.30
=

∂E

∂ht,t′n

· ∂(ot,t′n
· tanh (ct,t′n))
∂ot,t′n

=
∂E

∂ht,t′n

· tanh (ct,t′n)

∂E

∂ct,t′n
(A.32)

=
∂E

∂ht,t′n

· ∂ht,t′n

∂ct,t′n
Eq. A.30

=
∂E

∂ht,t′n

· ∂(ot,t′n
· tanh (ct,t′n))
∂ct,t′n

=
∂E

∂ht,t′n

· ot,t′n
· (1− tanh2 (ct,t′n))

For Equation A.29:

∂E

∂
(
Mo[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T
)
n

(A.33)

=
∂E

∂ot,t′n

· ∂ot,t′n

∂
(
Mo[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T
)
n

Eq. A.29
=

∂E

∂ot,t′n

·
∂σ
(
(Mo[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T)n

)

∂
(
Mo[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T
)
n

=
∂E

∂ot,t′n

· σ
(
(Mo[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T)n
)

·
[
1− σ

(
(Mo[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t,t′]

T)n
)]

Eq. A.29
=

∂E

∂ot,t′n

· ot,t′n
· (1− ot,t′n

)

74

A.1 Derivations

For Equation A.28:

∂E

∂ft,t′n
(A.34)

=
∂E

∂ct,t′n
· ∂ct,t

′

n

∂ft,t′n

Eq. A.28
=

∂E

∂ct,t′n
· ∂
(
ft,t′n · (λt,t′n

· ct−1,t′n + (1− λt,t′n
) · ct,t′−1n) + it,t′n · c̃t,t′n

)

∂ft,t′n

=
∂E

∂ct,t′n
·
(
λt,t′n

· ct−1,t′n + (1− λt,t′−1n) · ct,t′−1n

)

∂E

∂ct−1,t′n

(A.35)

=
∂E

∂ct,t′n
· ∂ct,t′n
∂ct−1,t′n

Eq. A.28
=

∂E

∂ct,t′n
· ∂
(
ft,t′n · (λt,t′n

· ct−1,t′n + (1− λt,t′n
) · ct,t′−1n) + it,t′n · c̃t,t′n

)

∂ct−1,t′n

=
∂E

∂ct,t′n
· ft,t′n · λt,t′n

∂E

∂ct,t′−1n

(A.36)

=
∂E

∂ct,t′n
· ∂ct,t′n
∂ct,t′−1n

Eq. A.28
=

∂E

∂ct,t′n
· ∂
(
ft,t′n · (λt,t′n

· ct−1,t′n + (1− λt,t′n
) · ct,t′−1n) + it,t′n · c̃t,t′n

)

∂ct,t′−1n

=
∂E

∂ct,t′n
· ft,t′n · (1− λt,t′n

)

∂E

∂λt,t′n

(A.37)

=
∂E

∂ct,t′n
· ∂ct,t

′

n

∂λt,t′n

Eq. A.28
=

∂E

∂ct,t′n
· ∂
(
ft,t′n · (λt,t′n

· ct−1,t′n + (1− λt,t′n
) · ct,t′−1n) + it,t′n · c̃t,t′n

)

∂λt,t′n

=
∂E

∂ct,t′n
· ft,t′n ·

(
ct−1,t′n − ct,t′−1n

)

75

Appendix A Appendix

∂E

∂it,t′n
(A.38)

=
∂E

∂ct,t′n
· ∂ct,t

′

n

∂it,t′n

Eq. A.28
=

∂E

∂ct,t′n
· ∂
(
ft,t′n · (λt,t′n

· ct−1,t′n + (1− λt,t′n
) · ct,t′−1n) + it,t′n · c̃t,t′n

)

∂it,t′n

=
∂E

∂ct,t′n
· c̃t,t′n

∂E

∂c̃t,t′n
(A.39)

=
∂E

∂ct,t′n
· ∂ct,t

′

n

∂c̃t,t′n

Eq. A.28
=

∂E

∂ct,t′n
· ∂
(
ft,t′n · (λt,t′n

· ct−1,t′n + (1− λt,t′n
) · ct,t′−1n) + it,t′n · c̃t,t′n

)

∂c̃t,t′n

=
∂E

∂ct,t′n
· it,t′n

For Equation A.27:

∂E

∂
(
Mc[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1]

T
)
n

(A.40)

=
∂E

∂c̃t,t′n
· ∂c̃t,t′n

∂
(
Mc[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1]

T
)
n

Eq. A.27
=

∂E

∂c̃t,t′n
·
∂tanh

(
(Mc[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1]

T)n

)

∂
(
Mc[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1]

T
)
n

=
∂E

∂c̃t,t′n
·
[
1− tanh2

(
(Mc[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1]

T)n
)]

Eq. A.27
=

∂E

∂c̃t,t′n
· (1− c̃t,t′

2
n
)

76

A.1 Derivations

For Equation A.26:

∂E

∂
(
Mλ[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

(A.41)

=
∂E

∂λt,t′n

· ∂λt,t′n

∂
(
Mλ[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

Eq. A.26
=

∂E

∂λt,t′n

·
∂σ
(
(Mλ[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n

)

∂
(
Mλ[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

=
∂E

∂λt,t′n

· σ
(
(Mλ[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n
)

·
[
1− σ

(
(Mλ[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n
)]

Eq. A.26
=

∂E

∂λt,t′n

· λt,t′n
· (1− λt,t′n

)

For Equation A.25:

∂E

∂
(
Mi[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

(A.42)

=
∂E

∂it,t′n
· ∂it,t′n

∂
(
Mi[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

Eq. A.25
=

∂E

∂it,t′n
·
∂σ
(
(Mi[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n

)

∂
(
Mi[xT

t,t′ ,h
T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

=
∂E

∂it,t′n
· σ
(
(Mi[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n
)

·
[
1− σ

(
(Mi[x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n
)]

Eq. A.25
=

∂E

∂it,t′n
· it,t′n · (1− it,t′n)

77

Appendix A Appendix

For Equation A.24:

∂E

∂
(
Mf [x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

(A.43)

=
∂E

∂ft,t′n
· ∂ft,t′n

∂
(
Mf [x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

Eq. A.24
=

∂E

∂ft,t′n
·
∂σ
(
(Mf [x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n

)

∂
(
Mf [x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T
)
n

=
∂E

∂ft,t′n
· σ
(
(Mf [x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n
)

·
[
1− σ

(
(Mf [x

T
t,t′ ,h

T
t−1,t′ ,h

T
t,t′−1, c

T
t−1,t′ , c

T
t,t′−1]

T)n
)]

Eq. A.24
=

∂E

∂ft,t′n
· ft,t′n · (1− ft,t′n)

One can compute the derivations for the weight matrices and input, state and
memory cells using the differentiation of matrix vector products described in Ap-
pendix A.1.1. If multiple gradients for the same variable are computed, these have
to be summed.

A.2 Notation

e target word
f source word
I length of target sentence
J length of source sentence
i target sentence index
j source sentence index
eI1 target sentence
fJ
1 source sentence
E set of possible sentences in the target language

êÎ1 hypothesis in the target language
Pr(·|·) general probability model

δ Kronecker delta
a alignment of a source word to the target sentence
φi fertility of a target word with index i

x(n) neurons in layer n of a neural network (NN)

78

A.2 Notation

x(n,t=t′) values of the neurons in layer n of an NN at time step t′

b(n) biases in layer n of an NN

W (n) weight matrix in layer n of an NN

y(t=t′) output of an NN at time step t′

f(·) arbitrary function
ct memory cell of an LSTM
c̃t input candidate of an LSTM at time step t
ot output gate of an LSTM at time step t
it input gate of an LSTM at time step t
ft forget gate of an LSTM at time step t
at state of an LSTM or gated recurrent unit (GRU) at time step t
rt reset gate of a GRU

t, t′, (t, t′) time steps
L loss function
wt weight, part of a weight matrix, at time step t

∆wt weight update at time step t
α learning rate
β decay rate
fj one-hot vector indicating the position of word fj in the source vocabulary
ej one-hot vector indicating the position of word ej in the target vocabulary
−→
hj state of an RNN applied in forward direction
←−
hj state of an RNN applied in backward direction
hj source representation of position j
ẽj,i energy for source position j at time step i
αj,i attention weight for source position j at time step i
ci context vector of an attention model at time step i

79

Appendix A Appendix

A.3 Corpus statistics

A.3.1 WMT 2017 German→English and English→German

Table A.2: Corpus statistics for WMT 2017 German→English and Eng-
lish→German. In these statistics, the newstest sets from 2008-2014 are
not appended to the training set.

English German

vocabulary 24,259 24,262

training
sequences 4,590,101 4,590,101
running symbols 141,126,672 148,809,604
running words 120,554,250 113,881,220

newstest15
sequences 2,169 2,169
running symbols 58,633 62,562
running words 47,565 44,863

newstest16
sequences 2,999 2,999
running symbols 80,459 88,302
running words 65,629 64,359

newstest17
sequences 3,004 3,004
running symbols 80,982 87,345
running words 66,043 62,157

80

A.3 Corpus statistics

A.3.2 IWSLT 2013 Indomain German→English

Table A.3: Corpus statistics for IWSLT 2013 Indomain German→English

English German

vocabulary 11,925 15,833

training
sequences 138,499 138,499
running symbols 3,019,134 3,076,317
running words 2,763,534 2,607,154

development
sequences 887 887
running symbols - 23,094
running words 20,258 19,276

81

List of Figures

2.1 The architecture of an statistical machine translation (SMT) system 9

3.1 Activation functions . 14
3.2 Single- and multilayer network topologies of the logical AND, OR

and XOR operations . 15
3.3 Unrolling of an RNN . 16
3.4 An overview of an LSTM and a 2DLSTM cell 19
3.5 Dependencies in a 1D and 2D RNN 20
3.6 Parallelization of a 2DLSTM . 22
3.7 The gradient indicates the direction of the update 24
3.8 Overshooting during parameter optimization 28

4.1 Structure of an encoder-decoder network 35
4.2 The structure of a network using attention 38

5.1 1D attention using an LSTM . 42
5.2 The setup of the 2DLSTM attentin model 45
5.3 Reusing the 2DLSTM during decoding 46
5.4 A 2D seq2seq architecture . 49
5.5 A 2D encoder . 50

6.1 Training a 2DLSTM with learning rate 10−3 leads to an increasing
training cost . 62

6.2 Performance of the baseline and two 2D seq2seq models w.r.t the
source sequence length . 66

83

List of Tables

6.1 Example of the byte pair encoding (BPE) algorithm 53
6.2 Evaluation of recomputing the encoding 55
6.3 Trainind and decoding speed of recomputing the encoding 56
6.4 Comparison of GRUs and LSTMs as the attention layer and two

ways to pass the decoder state . 57
6.5 Trainind and decoding speed of a model with a 1D LSTM attention

layer . 57
6.6 Comparison of different possibilities to compute the context vector . 58
6.7 Comparison of 1D and 2DLSTM as the attention machanism 58
6.8 Comparison of 1D and 2DLSTM as the attention machanism 58
6.9 Trainind and decoding speed of a model with a 2DLSTM attention

layer . 59
6.10 Analysis of the influence of an additional weighting layer on top of a

2DLSTM attention layer . 59
6.11 Evaluation of the influence of the initialization on 2DLSTM 60
6.12 Comparison of 2DLSTM sizes . 63
6.13 Trainind and decoding speed of a model with a 2DLSTM attention

layer with size 500 . 63
6.14 Evaluation of the performance of a 2D seq2seq model 64
6.15 Trainind and decoding speed of a 2D seq2seq model 64
6.16 Comparison of a simple and an extended 2D seq2seq model 66

A.2 Corpus statistics for WMT 2017 German→English and English→Ger-
man . 80

A.3 Corpus statistics for IWSLT 2013 Indomain German→English 81

85

Glossary

Bleu bilingual evaluation understudy (score). 10–12, 25, 55–60, 63–68

Ppl perplexity. 10, 11, 25, 55, 57–60, 62–65

Ter translation edit rate. 10–12, 25, 55–60, 63–68

1D one-dimensional. 2, 3, 18, 20, 42, 54, 56–61, 65–68, 83, 85

2D two-dimensional. 3, 20, 21, 43, 48–50, 58, 61, 64, 65, 67, 83

2D seq2seq 2D sequence to sequence. 48, 49, 63–68, 83, 85

2DLSTM two-dimensional LSTM. v, 1, 2, 19–22, 27, 40, 43–49, 54, 57–65, 67–69,
73, 83, 85

Adam adaptive moment estimation. 29, 31

ANN artificial neural network. 3, 13, 51

ASR automatic speech recognition. 2

BPE byte pair encoding. 52–54, 85

BPTT backpropagation through time. 16, 27

CEC constant error carousel. 17

CNN convolutional neural network. 33

CPU central processing unit. 22

DNN deep neural network. 15, 16

FFNN feedforward neural network. 14–16, 24, 33

GPU graphics processing unit. 22

GRU gated recurrent unit. v, 2, 23, 40, 41, 56–58, 79, 85

87

Glossary

IWSLT international workshop on spoken language translation. 54

LM language model. 6, 7, 9, 33

LSTM long short-term memory. v, 2, 17–21, 23, 27, 33–37, 40–42, 47, 48, 54,
56–61, 66, 69, 70, 73, 79, 83, 85

MDLSTM multi-dimensional LSTM. 20, 22

MRT minimum risk training. 25

MT machine translation. v, 1–3, 5, 6, 10, 24, 33

NMT neural machine translation. v, 1–3, 21, 33, 37

NN neural network. v, 1, 25, 33, 39, 52, 61, 78, 79

OOV out of vocabulary. 51, 52

pp percent point. 55, 56, 58, 59, 63–65, 67, 68

RETURNN RWTH extensible training framework for universal recurrent neural
networks. 2, 22, 45, 47

RNN recurrent neural network. v, 1–3, 16, 17, 20, 23, 24, 26, 41–43, 54, 56–58, 67,
68, 79, 83, 85

SGD stochastic gradient descent. 27–29

SMT statistical machine translation. 2, 3, 6, 8, 9, 53, 83

TED technology, entertainment, design. 54

WMT workshop on machine translation. 54–60, 62–65, 80

88

Bibliography

P. Bahar, T. Alkhouli, J.-T. Peter, C. J.-S. Brix, and H. Ney. Empirical In-
vestigation of Optimization Algorithms in Neural Machine Translation. The
Prague Bulletin of Mathematical Linguistics (PBML), 108(1):13–25, May 2017.
ISSN 1804-0462. doi: 10.1515/pralin-2017-0005. URL https://publications.

rwth-aachen.de/record/715053.

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly
Learning to Align and Translate. Computing Research Repository (CoRR),
abs/1409.0473, 2014. URL http://arxiv.org/abs/1409.0473.

T. Bayes. An Essay towards Solving a Problem in the Doctrine of Chances. Phil.
Trans. of the Royal Soc. of London, 53:370–418, 1763.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A Neural Probabilistic Lan-
guage Model. Journal of Machine Learning Research, 3:1137–1155, March 2003.
ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=944919.944966.

P. F. Brown, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. Lafferty,
R. L. Mercer, and P. S. Roossin. A Statistical Approach to Machine Translation.
Computational Linguistics, 16(2):79–85, June 1990. ISSN 0891-2017. URL http:

//dl.acm.org/citation.cfm?id=92858.92860.

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The Math-
ematics of Statistical Machine Translation: Parameter Estimation. Compu-
tational Linguistics, 19(2):263–311, June 1993. ISSN 0891-2017. URL http:

//dl.acm.org/citation.cfm?id=972470.972474.

C. Callison-Burch, M. Osborne, and P. Koehn. Re-evaluating the Role of BLEU
in Machine Translation Research. In European Chapter of the Association for
Computational Linguistics (EACL), pages 249–256, 2006.

S. F. Chen and H. Goodman. An Empirical Study of Smoothing Techniques for
Language Modeling. In Proceedings of the 34th Annual Meeting on Association
for Computational Linguistics (ACL), pages 310–318, Stroudsburg, PA, USA,
1996. Association for Computational Linguistics. doi: 10.3115/981863.981904.
URL https://doi.org/10.3115/981863.981904.

89

https://publications.rwth-aachen.de/record/715053
https://publications.rwth-aachen.de/record/715053
http://arxiv.org/abs/1409.0473
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=92858.92860
http://dl.acm.org/citation.cfm?id=92858.92860
http://dl.acm.org/citation.cfm?id=972470.972474
http://dl.acm.org/citation.cfm?id=972470.972474
https://doi.org/10.3115/981863.981904

Appendix A Bibliography

K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734,
Doha, Qatar, October 2014. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/D14-1179.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. 2014.

A. Coates, A. Ng, and H. Lee. An Analysis of Single-Layer Networks in Unsuper-
vised Feature Learning. In Geoffrey Gordon, David Dunson, and Miroslav Dud́ık,
editors, Proceedings of the Fourteenth International Conference on Artificial In-
telligence and Statistics (AISTATS), volume 15, pages 215–223, Fort Lauderdale,
FL, USA, 11–13 Apr. 2011. Proceedings of Machine Learning Research (PMLR).
URL http://proceedings.mlr.press/v15/coates11a.html.

M. R. Costa-Jussà, M. Farrús, J. B. Mariño, and J. A. R. Fonollosa. Study and
Comparison of Rule-Based and Statistical Catalan-Spanish Machine Translation
Systems. Computing and Informatics, 31(2):245–270, 2012. URL http://www.

cai.sk/ojs/index.php/cai/article/view/940.

D. Coughlin. Correlating Automated and Human Assessments of Machine Trans-
lation Quality. In Proceedings of Machine Translation Summit IX, pages 63–70,
2003.

G. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Mathem-
atics of Control, Signals and Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X.
doi: 10.1007/BF02551274. URL https://doi.org/10.1007/BF02551274.

P. Doetsch, A. Zeyer, P. Voigtlaender, I. Kulikov, R. Schlüter, and H. Ney.
RETURNN: The RWTH Extensible Training framework for Universal Recur-
rent Neural Networks. Computing Research Repository (CoRR), abs/1608.00895,
2016. URL http://arxiv.org/abs/1608.00895.

P. Gage. A New Algorithm for Data Compression. C Users Journal, 12(2):23–38,
February 1994. ISSN 0898-9788. URL http://dl.acm.org/citation.cfm?id=

177910.177914.

F. A. Gers and J. Schmidhuber. Recurrent Nets that Time and Count. In IEEE In-
ternational Joint Conference on Neural Networks (IJCNN), volume 3, pages 189–
194, 2000. URL http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2000-3.

html#GersS00.

90

http://www.aclweb.org/anthology/D14-1179
http://proceedings.mlr.press/v15/coates11a.html
http://www.cai.sk/ojs/index.php/cai/article/view/940
http://www.cai.sk/ojs/index.php/cai/article/view/940
https://doi.org/10.1007/BF02551274
http://arxiv.org/abs/1608.00895
http://dl.acm.org/citation.cfm?id=177910.177914
http://dl.acm.org/citation.cfm?id=177910.177914
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2000-3.html#GersS00
http://dblp.uni-trier.de/db/conf/ijcnn/ijcnn2000-3.html#GersS00

Appendix A Bibliography

F. A. Gers, J. A. Schmidhuber, and F. A. Cummins. Learning to Forget: Continual
Prediction with LSTM. Neural Computation, 12(10):2451–2471, October 2000.
ISSN 0899-7667. doi: 10.1162/089976600300015015. URL http://dx.doi.org/

10.1162/089976600300015015.

X. Glorot and Y. Bengio. Understanding the Difficulty of Training Deep Feedfor-
ward Neural Networks. In Yee Whye Teh and Mike Titterington, editors, Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 9 of Proceedings of Machine Learning Research,
pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.
URL http://proceedings.mlr.press/v9/glorot10a.html.

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Max-
out Networks. In Proceedings of the 30th International Conference on Interna-
tional Conference on Machine Learning (ICML), volume 28, pages III–1319–III–
1327. JMLR.org, 2013. URL http://dl.acm.org/citation.cfm?id=3042817.

3043084.

A. Graves. Generating Sequences with Recurrent Neural Networks. Computing
Research Repository (CoRR), abs/1308.0850, 2013. URL http://arxiv.org/

abs/1308.0850.

A. Graves and J. Schmidhuber. Offline Handwriting Recognition with Multi-
dimensional Recurrent Neural Networks. In Proceedings of the 21st Interna-
tional Conference on Neural Information Processing Systems (NIPS), pages
545–552, USA, 2008. Curran Associates Inc. ISBN 978-1-6056-0-949-2. URL
http://dl.acm.org/citation.cfm?id=2981780.2981848.

A. Graves, S. Fernández, and J. Schmidhuber. Multi-dimensional Recurrent Neural
Networks. In J. Marques de Sá, L. A. Alexandre, W. Duch, and D. P. Man-
dic, editors, Artificial Neural Networks - ICANN 2007, 17th International Con-
ference, Porto, Portugal, Proceedings, Part I, volume 4668 of Lecture Notes in
Computer Science, pages 549–558. Springer, 9–13 Sept. 2007. ISBN 978-3-540-
74689-8. doi: 10.1007/978-3-540-74690-4 56. URL https://doi.org/10.1007/

978-3-540-74690-4_56.

S. Hashem and B. Schmeiser. Improving Model Accuracy using Optimal Linear
Combinations of Trained Neural Networks. IEEE Transactions on Neural Net-
works, 6(3):792–794, May 1995. ISSN 1045-9227. doi: 10.1109/72.377990.

S. Hochreiter. Untersuchungen zu Dynamischen Neuronalen Netzen. Diploma
thesis, Computer Science Department, Prof. Brauer, Technische Universität
München, 1991.

91

http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015
http://proceedings.mlr.press/v9/glorot10a.html
http://dl.acm.org/citation.cfm?id=3042817.3043084
http://dl.acm.org/citation.cfm?id=3042817.3043084
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://dl.acm.org/citation.cfm?id=2981780.2981848
https://doi.org/10.1007/978-3-540-74690-4_56
https://doi.org/10.1007/978-3-540-74690-4_56

Appendix A Bibliography

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.
1735. URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient Flow in
Recurrent Nets: the Difficulty of Learning Long-term Dependencies. In S. C.
Kremer and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural
Networks. IEEE Press, 2001.

K. Hornik, M. Stinchcombe, and H. White. Multilayer Feedforward Networks are
Universal Approximators. Neural Networks, 2(5):359 – 366, 1989. ISSN 0893-
6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. URL http://www.

sciencedirect.com/science/article/pii/0893608089900208.

M. J.-D., T. Dwojak, and R. Sennrich. The AMU-UEDIN Submission to the
WMT16 News Translation Task: Attention-based NMT Models as Feature
Functions in Phrase-based SMT. Computing Research Repository (CoRR),
abs/1605.04809, 2016. URL http://arxiv.org/abs/1605.04809.

N. Kalchbrenner and P. Blunsom. Recurrent Continuous Translation Models. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, Seattle, October 2013. Association for Computational Linguistics.

N. Kalchbrenner, I. Danihelka, and A. Graves. Grid Long Short-Term Memory.
Computing Research Repository (CoRR), abs/1507.01526, 2015. URL http://

arxiv.org/abs/1507.01526.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. Computing
Research Repository (CoRR), abs/1412.6980, 2014. URL http://arxiv.org/

abs/1412.6980.

R. Kneser and H. Ney. Improved Backing-off for M-gram Language Modeling.
In 1995 International Conference on Acoustics, Speech, and Signal Processing,
volume 1, pages 181–184 vol.1, May 1995. doi: 10.1109/ICASSP.1995.479394.

V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, February 1966.

J. Li, A. Mohamed, G. Zweig, and Y. Gong. Exploring Multidimensional LSTMs
for Large Vocabulary ASR. In 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), Shanghai, China, pages 4940–4944.
IEEE, 20–25 March 2016. ISBN 978-1-4799-9988-0. doi: 10.1109/ICASSP.2016.
7472617. URL https://doi.org/10.1109/ICASSP.2016.7472617.

92

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://arxiv.org/abs/1605.04809
http://arxiv.org/abs/1507.01526
http://arxiv.org/abs/1507.01526
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICASSP.2016.7472617

Appendix A Bibliography

F. J. Och and H. Ney. Discriminative Training and Maximum Entropy Mod-
els for Statistical Machine Translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics (ACL), pages 295–302,
Stroudsburg, PA, USA, 2002. Association for Computational Linguistics. doi:
10.3115/1073083.1073133. URL https://doi.org/10.3115/1073083.1073133.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: A Method for Auto-
matic Evaluation of Machine Translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics (ACL), pages 311–318,
Stroudsburg, PA, USA, 2002. Association for Computational Linguistics. doi:
10.3115/1073083.1073135. URL https://doi.org/10.3115/1073083.1073135.

M.’A. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence Level Train-
ing with Recurrent Neural Networks. Computing Research Repository (CoRR),
abs/1511.06732, 2015. URL http://arxiv.org/abs/1511.06732.

S. J. Reddi, S. Kale, and S. Kumar. On the Convergence of Adam and Beyond.
International Conference on Learning Representations, 01, 2018. URL https:

//openreview.net/forum?id=ryQu7f-RZ. accepted as oral presentation.

F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project
Para. Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laborat-
ory, 1957. URL https://books.google.de/books?id=P_XGPgAACAAJ.

S. Ruder. An Overview of Gradient Descent Optimization Algorithms. Computing
Research Repository (CoRR), abs/1609.04747, 2016. URL http://arxiv.org/

abs/1609.04747.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition. volume 1, chapter
Learning Internal Representations by Error Propagation, pages 318–362. MIT
Press, Cambridge, MA, USA, 1986. ISBN 0-262-68053-X. URL http://dl.acm.

org/citation.cfm?id=104279.104293.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Founda-
tions of Research. chapter Learning Representations by Back-propagating Errors,
pages 696–699. MIT Press, Cambridge, MA, USA, 1988. ISBN 0-262-01097-6.
URL http://dl.acm.org/citation.cfm?id=65669.104451.

T. N. Sainath and B. Li. Modeling Time-Frequency Patterns with LSTM vs. Convo-
lutional Architectures for LVCSR Tasks. In N. Morgan, editor, Interspeech 2016,
17th Annual Conference of the International Speech Communication Association,
San Francisco, CA, USA, pages 813–817. ISCA, 8–12 Sept. 2016. doi: 10.21437/
Interspeech.2016-84. URL https://doi.org/10.21437/Interspeech.2016-84.

93

https://doi.org/10.3115/1073083.1073133
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1511.06732
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://books.google.de/books?id=P_XGPgAACAAJ
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=65669.104451
https://doi.org/10.21437/Interspeech.2016-84

Appendix A Bibliography

R. Sennrich, B. Haddow, and A. Birch. Neural Machine Translation of Rare Words
with Subword Units. Computing Research Repository (CoRR), abs/1508.07909,
2015. URL http://arxiv.org/abs/1508.07909.

S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu. Minimum Risk
Training for Neural Machine Translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (ACL), Volume 1: Long
Papers. The Association for Computer Linguistics, 7–12 Aug. 2016. URL http:

//aclweb.org/anthology/P/P16/P16-1159.pdf.

G. F. Simons and C. D. Fennig. Ethnologue: Languages of the World, volume 20.
sil International Dallas, TX, 2017.

M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul. A Study of Transla-
tion Edit Rate with Targeted Human Annotation. In Proceedings of Association
for Machine Translation in the Americas, pages 223–231, 2006.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning with Neural
Networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 3104–3112. Curran Associates, Inc., 2014. URL http://papers.nips.cc/

paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf.

R. S. Sutton. Two Problems with Backpropagation and Other Steepest-Descent
Learning Procedures for Networks. In Proceedings of the Eighth Annual Confer-
ence of the Cognitive Science Society. Hillsdale, NJ: Erlbaum, 1986.

Theano Development Team. Theano: A Python Framework for fast Computation
of Mathematical Expressions. arXiv e-prints, abs/1605.02688, May 2016. URL
http://arxiv.org/abs/1605.02688.

J. Utans. Weight Averaging for Neural Networks and Local Resampling Schemes.
In Proc. AAAI-96 Workshop on Integrating Multiple Learned Models, pages 133–
138. AAAI Press, 1996.

B. van Merriënboer, D. Bahdanau, V. Dumoulin, D. Serdyuk, D. W.-F.,
K. Chorowski, and Y. Bengio. Blocks and Fuel: Frameworks for Deep Learn-
ing. Computing Research Repository (CoRR), abs/1506.00619, 2015. URL
http://arxiv.org/abs/1506.00619.

P. Voigtlaender, P. Doetsch, and H. Ney. Handwriting Recognition with Large
Multidimensional Long Short-Term Memory Recurrent Neural Networks. In In-
ternational Conference on Frontiers in Handwriting Recognition, pages 228–233,
Shenzhen, China, October 2016. IAPR Best Student Paper Award.

94

http://arxiv.org/abs/1508.07909
http://aclweb.org/anthology/P/P16/P16-1159.pdf
http://aclweb.org/anthology/P/P16/P16-1159.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1506.00619

Appendix A Bibliography

B. Zhang, D. Xiong, and J. Su. Recurrent Neural Machine Translation. Computing
Research Repository (CoRR), abs/1607.08725, 2016. URL http://arxiv.org/

abs/1607.08725.

B. Zhang, D. Xiong, J. Su, and H. Duan. A Context-Aware Recurrent Encoder
for Neural Machine Translation. IEEE/ACM Trans. Audio, Speech & Language
Processing, 25(12):2424–2432, 2017. doi: 10.1109/TASLP.2017.2751420. URL
https://doi.org/10.1109/TASLP.2017.2751420.

95

http://arxiv.org/abs/1607.08725
http://arxiv.org/abs/1607.08725
https://doi.org/10.1109/TASLP.2017.2751420

	Title
	Abstract
	Contents
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Statistical Machine Translation (SMT)
	2.1 Fundamental Equations
	2.2 Beam Search
	2.3 Automatic Evaluation Metrics
	2.3.1 BLEU
	2.3.2 Translation Edit Rate (TER)

	3 Artificial Neural Network (ANN)
	3.1 Neuron
	3.2 Feedforward Neural Network (FFNN)
	3.3 Recurrent Neural Network (RNN)
	3.3.1 Long Short-Term Memory (LSTM)
	3.3.2 Multi-Dimensional LSTM (MDLSTM)
	3.3.3 Gated Recurrent Unit (GRU)

	3.4 Training
	3.4.1 Loss Function
	3.4.2 Optimization

	3.5 Practical Observations

	4 Neural Machine Translation (NMT)
	4.1 Encoder-Decoder Architecture
	4.1.1 Encoder
	4.1.2 Decoder

	4.2 Attention-based NMT
	4.2.1 Bidirectional Encoder
	4.2.2 Attention Layer
	4.2.3 Decoder

	5 Extensions of the Attention Mechanism
	5.1 Recalculating the Encoder State
	5.2 One-Dimensional (1D) Attention
	5.2.1 Additional Attention Layer
	5.2.2 Providing the Decoder State

	5.3 Two-Dimensional (2D) Attention
	5.3.1 Difference between Training and Decoding
	5.3.2 Optimization of the Backward Pass

	5.4 2D Sequence to Sequence (2D seq2seq) Model
	5.4.1 2D Encoder
	5.4.2 Weighting Mechanism

	6 Experiments
	6.1 Preprocessing
	6.1.1 Tokenization
	6.1.2 Subword Units
	6.1.3 Category Replacement

	6.2 Setup
	6.3 Recalculating the Encoding
	6.4 One-Dimensional (1D) Attention
	6.5 Two-Dimensional (2D) Attention
	6.5.1 General Performance
	6.5.2 Learning Rate
	6.5.3 Model Size

	6.6 Two-Dimensional Sequence to Sequence (2D seq2seq)

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	A Appendix
	A.1 Derivations
	A.1.1 Matrix-Vector Products
	A.1.2 Long Short-Term Memory (LSTM)
	A.1.3 Two-Dimensional LSTM (2DLSTM)

	A.2 Notation
	A.3 Corpus statistics
	A.3.1 WMT 2017 GermanEnglish and EnglishGerman
	A.3.2 IWSLT 2013 Indomain GermanEnglish

	List of Figures
	List of Tables
	Bibliography

