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About Me

Education:
I 2014 - 2018: B.Sc. Computer Science, RWTH Aachen University
I 2018 - 2020: M.Sc. Computer Science, RWTH Aachen University

Research:
I Student Research Assistant since 2016
. i6: Human Language Technology and Pattern Recognition

(Prof. Dr.-Ing. Ney)
. Supervisor: Parnia Bahar

I Coauthored paper "Empirical Investigation of Optimization Algorithms
in Neural Machine Translation", published in the PBML

I Coauthored paper "Towards Two-Dimensional Sequence to Sequence
Model in Neural Machine Translation", published in EMNLP

Highlights:
I LxMLS, Participant & Monitor
I Google NLP Summit 2019
I Google Research Intern 2020
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Neural Machine Translation (NMT)

Machine translation:
I translate source sentence fJ1 to target hypothesis êÎ1
I êÎ1 = argmax

I,eI1

{
Pr(eI1|fJ1 )

}
SMT:
I decompose using Bayes theorem
I êÎ1 = argmax

I,eI1

{
Pr(fJ1 |eI1) · Pr(eI1)

}
NMT:
I directly model Pr(eI1|fJ1 )
I generate words using neural network (NN)
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Encoder-Decoder

Idea: Encode, then decode [Sutskever+ 14]
I Summarize source sentence to fixed-sized vector
I Decode summary to target sentence

f1 f2 fJ−1 fJ ê1 êÎ−2 êÎ−1

enc1 enc2 encJ−1 dec1 dec2 decÎ−1 decÎ

ê1 ê2 êÎ−1 êÎ

Figure: Architecture of an encoder-decoder NMT system
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Attention

Idea: Focus on specific source words [Bahdanau+ 15]:
I Summarize partial source sentence
I Decode summary to target word
I Repeat

Online Visualization: https://jalammar.github.io/visualizing-neural-
machine-translation-mechanics-of-seq2seq-models-with-attention
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Attention

Encoder:
fJ1 →

−→
hj = LSTM(fj,

−→
hj−1)

fJ1 →
←−
hj = LSTM(fj,

←−
hj+1)

hj =

[−→
hj←−
hj

]
Attention:
α(j|i) = Aj(si−1, h

J
1 )

ci =
J∑
j=1

α(j|i) · hj

Decoder:
ei← ti = Y (ei−1, si−1, ci)

si = LSTM([ei, ci], si−1)

pi(ei = w|ei−11 , fJ1 )

= softmax(ti)w

. . . . . .

ei+1 si+1

. . . . . .

ei si

α(j|i+ 1), j = 1, . . . , J ci+1

ei−1 si−1

α(j|i), j = 1, . . . , J ci

. . . . . .

α(j|i− 1), j = 1, . . . , J ci−1

. . . . . .

h... hj−1 hj hj+1 h...

f... fj−1 fj fj+1 f...

Figure: Architecture of an attention NMT system
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Transformer

Idea: Self-Attention for high parallelizability [Vaswani+ 17]:
I Every word computes importance of all other positions for itself
I Different indices are independent
I α(j|j′) = Aj(hj′, h

J
1 )

ĥj′ =
J∑
j=1

α(j|j′) · hj

h1 h2 hJ−1 hJ. . .

. . .h′1 h′2 h′J−1 h′J

Figure: Self-Attention

Online Visualization: http://jalammar.github.io/illustrated-transformer
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Transformer

Positional Encoding:
I Sine/Cosine encoding of sentence index

6 Encoder Layers:
I Multi-Head Attention
I Feed Forward Layer

6 Decoding Layers:
I Masked Multi-Head Attention

(on decoding sequence)
I Multi-Head Attention (on last encoder)
I Feed Forward Layer

Figure: Architecture of a
transformer NMT system
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Two-Dimensional LSTM

I One-Dimensional LSTM processes one stream of data
I Often, data has more dimensions: eg. images
I LSTM can be extended to multiple dimensions [Graves+ 07]

input layer

hidden layer

(t)

(t)

(t− 1)

input layer

hidden layer

(t, t′)

(t, t′)

(t− 1, t′)

(t, t′ − 1)

Figure: Extension of LSTM to two dimensions
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Two-Dimensional LSTM

ct,t′

Cell

× ht,t′×c̃t,t′

Input Activation

×

ft,t′ Forget Gate λt,t′ Lambda Gate

it,t′Input Gate ot,t′Output Gate

xt,t′

ht,t′−1

ht−1,t′

xt,t′
ht,t′−1ht−1,t′

xt,t′
ht,t′−1ht−1,t′

xt,t′ ht,t′−1ht−1,t′ xt,t′ ht,t′−1ht−1,t′

Figure: 2DLSTM cell

C. Brix: Current State of Research in Neural Machine Translation 11/19 14/01/2020



Parallel Processing

I 1DLSTM iterating over n inputs: O(n) operations

(a) Dependencies

7 8 9

4 5 6

1 2 3

(b) Ordered processing

3 4 5

2 3 4

1 2 3

(c) Parallel processing

I 2DLSTM can be optimized to only O(n+m) operations [Voigtlaender+

16]
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2D Sequence to Sequence (2D seq2seq)

Novel architecture [Bahar+ 18]:
I no explicit encoder
I no explicit decoder
I complexity O(I + J)

2DLSTM:

a0,0 = 0

aj,i = 2DLSTM([fj, ei−1],

aj−1,i, aj,i−1)

Prediction:

êi← softmax(aJ,i)

ei+1

ei

ei−1

aj−1,i aj,i

aj,i−1

f... fj−1 fj fj+1

Figure: 2D seq2seq architecture
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2D seq2seq - Results

Table: WMT 2016/17, with an encoder/attention/decoder/2DLSTM size of 1000.

German→English English→German
BLEU [%] TER [%] BLEU [%] TER [%]
2016 2017 2016 2017 2016 2017 2016 2017

Baseline 33.1 29.0 47.5 51.9 27.4 22.9 53.9 60.2
2D seq2seq 33.7 29.3 46.9 51.9 28.9 23.2 52.6 59.5

Table: Training and Decoding Speed.

Training Decoding
[tokens/s] [tokens/s]

Baseline 2,944 48
2D seq2seq 791 0.7
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2D seq2seq - Performance w.r.t. Sequence Length
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(a) BLEU score w.r.t. the sequence length
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(b) TER score w.r.t. the sequence length

Figure: WMT 2017 newstest2015, newstest2016 and newstest2017 German→English

I Groups contain 1455, 3081, 2133, 990, 344 and 169 sentences,
respectively

I 2D seq2seq does not suffer from long sequences
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Data Cleaning/Augmentation/Fairness

Data Cleaning:
I Paracrawl corpus: 5.000.000.000 German-English sentence pairs
I Very noisy

Data Augmentation:
I Translate monolingual data with model A to train model B on bilingual

data
I Useful for small corpora

Data Fairness:
I Biased corpora create biased models
I Provide additional information (eg. gender) to model
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Document Level Translations

Problem:
I Sentence-wise translations may be inconsistent
. Gender
. Technical terms
. Missing context

Possible solutions:
I Attention over previous sentence
I Additional document summaries
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Sparsity

Idea:
I Remove part of the network to save space/computation time

Different kinds of sparsity:
I Structured sparsity
. Delete whole layers
. Delete individual neurons
. Delete blocks of connections

I Unstructured sparsity
. Delete individual connections
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Thank you for your attention

Christopher Brix

Christopher.Brix@rwth-aachen.de

www.christopher-brix.de
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