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About Me

Education:
» 2014 - 2018: B.Sc. Computer Science, RWTH Aachen University
» 2018 - 2020: M.Sc. Computer Science, RWTH Aachen University

Research:
» Student Research Assistant since 2016
> 16: Human Language Technology and Pattern Recognition
(Prof. Dr.-Ing. Ney)
> Supervisor: Parnia Bahar
» Coauthored paper "Empirical Investigation of Optimization Algorithms
in Neural Machine Translation", published in the PBML
» Coauthored paper "Towards Two-Dimensional Sequence to Sequence
Model in Neural Machine Translation", published in EMNLP

Highlights:

» LXMLS, Participant & Monitor
» Google NLP Summit 2019

» Google Research Intern 2020
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Neural Machine Translation (NMT)

Machine translation: A
» translate source sentence f. to target hypothesis é{

> é{ = argmax {Pr(ef|f{)}

I

SMT:
» decompose using Bayes theorem
> ¢! = argmax {Pr(f/|e]) - Pr(e])}

I

NMT:
» directly model Pr(e]|f;)
» generate words using neural network (NN)
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Encoder-Decoder

Idea: Encode, then decode [Sutskever* 14]
» Summarize source sentence to fixed-sized vector

» Decode summary to target sentence
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Figure: Architecture of an encoder-decoder NMT system
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Attention

Idea: Focus on specific source words [Bahdanau* 15]:
» Summarize partial source sentence

» Decode summary to target word

» Repeat

Online Visualization: https://jalammar.github.io/visualizing-neural-
machine-translation-mechanics-of-seg2seq-models-with-attention
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Figure: Architecture of an attention NMT system
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Idea: Self-Attention for high parallelizability [Vaswani* 17]:
» Every word computes importance of all other positions for itself
» Different indices are independent

> a(jli’) = Aj(hj, h)

J
71=1

Online Visualization: http://jalammar.github.io/illustrated-transformer
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Transformer

Positional Encoding:

» Sine/Cosine encoding of sentence index
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Figure: Architecture of a
transformer NMT system
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Two-Dimensional LSTM

» One-Dimensional LSTM processes one stream of data
» Often, data has more dimensions: eg. images
» LSTM can be extended to multiple dimensions [Graves* 07]
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Figure: Extension of LSTM to two dimensions
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Two-

Dimensional LSTM
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Figure: 2DLSTM cell
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Parallel Processing

» 1DLSTM iterating over n inputs: O(n) operations

(a) Dependencies

1 2 3
4 5 6
7 8 9

(b) Ordered processing

1 2 3
2 3 4
3 4 5

(c) Parallel processing

» 2DLSTM can be optimized to only O(n + m) operations [Voigtlaender*

16]
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2D Sequence to Sequence (2D seg2seq)

Novel architecture [Bahar* 18]:
» no explicit encoder

» no explicit decoder

» complexity O(I + J)

2DLSTM:

apo = 0
aj,z- — ZDLSTM([fj, ei_l],

a’j_la'i" a’jai_l)

€i+1

Prediction: - - — —
I. fi1 I Fin1

é; < softmax(ay;)
Figure: 2D seg2seq architecture
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2D seg2seq - Results

Table: WMT 2016/17, with an encoder/attention/decoder/2DLSTM size of 1000.

German—English  English—German
BLEU [%] TER[%] BLEU[%] TER [%]
2016 2017 2016 2017 2016 2017 2016 2017

Baseline 33.1 29.0 47.5 51.9 27.4 22.9 53.9 60.2
2D seq2seq 33.7 29.3 46.9 51.9 28.9 23.2 52.6 59.5

Table: Training and Decoding Speed.

Training Decoding

[tokens/s] [tokens/s]

Baseline 2,944 48
2D seq2seq 791 0.7
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2D seg2seq - Performance w.r.t. Sequence Length
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Figure: WMT 2017 newstest2015, newstest2016 and newstest2017 German—English

» Groups contain 1455, 3081, 2133, 990, 344 and 169 sentences,
respectively

» 2D seq2seq does not suffer from long sequences
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Data Cleaning/Augmentation/Fairness

Data Cleaning:
» Paracrawl corpus: 5.000.000.000 German-English sentence pairs
» Very noisy

Data Augmentation:

» Translate monolingual data with model A to train model B on bilingual
data

» Useful for small corpora

Data Fairness:
» Biased corpora create biased models
» Provide additional information (eg. gender) to model
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Document Level Translations

Problem:
» Sentence-wise translations may be inconsistent

> Gender
> Technical terms
> Missing context

Possible solutions:
» Attention over previous sentence
» Additional document summaries
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Sparsity

Idea:
» Remove part of the network to save space/computation time

Different kinds of sparsity:
» Structured sparsity

> Delete whole layers

> Delete individual neurons

> Delete blocks of connections
» Unstructured sparsity

> Delete individual connections

C. Brix: Current State of Research in Neural Machine Translation 18/19 14/01/2020



Thank you for your attention

Christopher Brix
Christopher.Brix@rwth—-aachen.de

www.christopher-brix.de
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