Current State of Research in Neural Machine Translation

Christopher Brix

christopher.brix@rwth-aachen.de

January 14th, 2020

www.christopher-brix.de

Outline

About Me

Neural Machine Translation (NMT) Old and New Architectures

2D-LSTMs

Other Research Data Cleaning/Fairness Document Level Translations Sparsity

About Me

Education:

- ► 2014 2018: B.Sc. Computer Science, RWTH Aachen University
- ► 2018 2020: M.Sc. Computer Science, RWTH Aachen University

Research:

- Student Research Assistant since 2016
 - i6: Human Language Technology and Pattern Recognition (Prof. Dr.-Ing. Ney)
 - Supervisor: Parnia Bahar
- Coauthored paper "Empirical Investigation of Optimization Algorithms in Neural Machine Translation", published in the PBML
- Coauthored paper "Towards Two-Dimensional Sequence to Sequence Model in Neural Machine Translation", published in EMNLP

Highlights:

- LxMLS, Participant & Monitor
- Google NLP Summit 2019
- Google Research Intern 2020

Neural Machine Translation (NMT)

Machine translation:

► translate source sentence f_1^J to target hypothesis $\hat{e}_1^{\hat{I}}$

$$\blacktriangleright \hat{e}_1^{\hat{I}} = \operatorname*{argmax}_{I,e_1^I} \left\{ \Pr(e_1^I | f_1^J) \right\}$$

SMT:

decompose using Bayes theorem

$$\blacktriangleright \hat{e}_1^I = \operatorname*{argmax}_{I, e_1^I} \left\{ \Pr(f_1^J | e_1^I) \cdot \Pr(e_1^I) \right\}$$

NMT:

- ► directly model $\Pr(e_1^I | f_1^J)$
- generate words using neural network (NN)

Encoder-Decoder

Idea: Encode, then decode [Sutskever⁺ 14]

- Summarize source sentence to fixed-sized vector
- Decode summary to target sentence

Figure: Architecture of an encoder-decoder NMT system

Attention

Idea: Focus on specific source words [Bahdanau⁺ 15]:

- Summarize partial source sentence
- Decode summary to target word
- Repeat

Online Visualization: https://jalammar.github.io/visualizing-neuralmachine-translation-mechanics-of-seq2seq-models-with-attention

Attention

Encoder:

$$f_1^J \to \overrightarrow{h}_j = LSTM(f_j, \overrightarrow{h}_{j-1})$$

 $f_1^J \to \overleftarrow{h}_j = LSTM(f_j, \overleftarrow{h}_{j+1})$
 $h_j = \left[\overrightarrow{h}_j \\ \overleftarrow{h}_j\right]$

Attention:

$$lpha(j|i) = A_j(s_{i-1},h_1^J) \ c_i = \sum_{j=1}^J lpha(j|i) \cdot h_j$$

Decoder:

$$egin{aligned} e_i \leftarrow t_i &= Y(e_{i-1}, s_{i-1}, c_i) \ s_i &= LSTM([e_i, c_i], s_{i-1}) \ p_i(e_i &= w | e_1^{i-1}, f_1^J) \ &= softmax(t_i)_w \end{aligned}$$

Figure: Architecture of an attention NMT system

Transformer

Idea: Self-Attention for high parallelizability [Vaswani⁺ 17]:

- Every word computes importance of all other positions for itself
- Different indices are independent

$$lacksim lpha(j|j') = A_j(h_{j'},h_1^J) \ \hat{h}_{j'} = \sum_{j=1}^J lpha(j|j') \cdot h_j$$

Figure: Self-Attention

Online Visualization: http://jalammar.github.io/illustrated-transformer

Transformer

Positional Encoding:

- Sine/Cosine encoding of sentence index
- 6 Encoder Layers:
 - Multi-Head Attention
- Feed Forward Layer

6 Decoding Layers:

- Masked Multi-Head Attention (on decoding sequence)
- Multi-Head Attention (on last encoder)
- Feed Forward Layer

Figure: Architecture of a transformer NMT system

Two-Dimensional LSTM

- One-Dimensional LSTM processes one stream of data
- Often, data has more dimensions: eg. images
- LSTM can be extended to multiple dimensions [Graves⁺ 07]

Figure: Extension of LSTM to two dimensions

Two-Dimensional LSTM

Parallel Processing

▶ 1DLSTM iterating over n inputs: O(n) operations

2DLSTM can be optimized to only O(n + m) operations [Voigtlaender⁺ 16]

2D Sequence to Sequence (2D seq2seq)

Figure: 2D seq2seq architecture

2D seq2seq - Results

Table: WMT 2016/17, with an encoder/attention/decoder/2DLSTM size of 1000.

	German→English				English→German			
	BLEU [%]		TER [%]		BLEU [%]		TER [%]	
	2016 20	17	2016	2017	2016	2017	2016	2017
Baseline	33.1 2	9.0	47.5	51.9	27.4	22.9	53.9	60.2
2D seq2seq	33.7 2	9.3	46.9	51.9	28.9	23.2	52.6	59.5

Table: Training and Decoding Speed.

	Training	Decoding
	[tokens/s]	[tokens/s]
Baseline	2,944	48
2D seq2seq	791	0.7

2D seq2seq - Performance w.r.t. Sequence Length

Figure: WMT 2017 newstest2015, newstest2016 and newstest2017 German \rightarrow English

Groups contain 1455, 3081, 2133, 990, 344 and 169 sentences, respectively

2D seq2seq does not suffer from long sequences

C. Brix: Current State of Research in Neural Machine Translation

Data Cleaning/Augmentation/Fairness

Data Cleaning:

- Paracrawl corpus: 5.000.000.000 German-English sentence pairs
- Very noisy

Data Augmentation:

- Translate monolingual data with model A to train model B on bilingual data
- Useful for small corpora

Data Fairness:

- Biased corpora create biased models
- Provide additional information (eg. gender) to model

Document Level Translations

Problem:

Sentence-wise translations may be inconsistent

- Gender
- Technical terms
- Missing context

Possible solutions:

- Attention over previous sentence
- Additional document summaries

Sparsity

Idea:

Remove part of the network to save space/computation time

Different kinds of sparsity:

- Structured sparsity
 - Delete whole layers
 - Delete individual neurons
 - Delete blocks of connections
- Unstructured sparsity
 - Delete individual connections

Thank you for your attention

Christopher Brix

Christopher.Brix@rwth-aachen.de

www.christopher-brix.de

References

P. Bahar, C. Brix, H. Ney.

Towards two-dimensional sequence to sequence model in neural machine translation.

In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 3009–3015, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational Linguistics.

- D. Bahdanau, K. Cho, Y. Bengio. Neural machine translation by jointly learning to align and translate. In *Proceedings of the International Conference on Learning Representations (ICLR)*, San Diego, CA, 2015.
- A. Graves, S. Fernández, J. Schmidhuber. Multi-dimensional recurrent neural networks. In [?], pp. 549–558.

I. Sutskever, O. Vinyals, Q. V. Le.

Sequence to sequence learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 27*, pp. 3104–3112. Curran Associates, Inc., 2014.

 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin.
 Attention is all you need.
 CORR, Vol. abs/1706.03762, 2017.